Matches in SemOpenAlex for { <https://semopenalex.org/work/W848155181> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W848155181 endingPage "720" @default.
- W848155181 startingPage "715" @default.
- W848155181 abstract "In this paper, we present a feature extraction approach for pedestrian detection by extracting the sparse representation of histograms of oriented gradients (HOG) feature and local binary pattern (LBP) feature using K-SVD. Moreover, we use PCA to reduce the dimension of HOG and LBP. We combine the low dimension principal features with the sparse representations of HOG feature directly for fast pedestrian detection from images. In addition, we compare the performance of sparse representations and PCA based features. Experimental results on INRIA databases show that the proposed approach provides a better detection result and spends less time." @default.
- W848155181 created "2016-06-24" @default.
- W848155181 creator A5000426340 @default.
- W848155181 creator A5026810767 @default.
- W848155181 creator A5064185915 @default.
- W848155181 creator A5086664284 @default.
- W848155181 date "2014-01-01" @default.
- W848155181 modified "2023-09-25" @default.
- W848155181 title "Pedestrian Detection Based on HOG and LBP" @default.
- W848155181 cites W2016215417 @default.
- W848155181 cites W2031454541 @default.
- W848155181 cites W2139916508 @default.
- W848155181 cites W2153635508 @default.
- W848155181 cites W2160547390 @default.
- W848155181 cites W2161106546 @default.
- W848155181 cites W2163808566 @default.
- W848155181 cites W2548197316 @default.
- W848155181 doi "https://doi.org/10.1007/978-3-319-09333-8_78" @default.
- W848155181 hasPublicationYear "2014" @default.
- W848155181 type Work @default.
- W848155181 sameAs 848155181 @default.
- W848155181 citedByCount "7" @default.
- W848155181 countsByYear W8481551812014 @default.
- W848155181 countsByYear W8481551812016 @default.
- W848155181 countsByYear W8481551812021 @default.
- W848155181 countsByYear W8481551812022 @default.
- W848155181 crossrefType "book-chapter" @default.
- W848155181 hasAuthorship W848155181A5000426340 @default.
- W848155181 hasAuthorship W848155181A5026810767 @default.
- W848155181 hasAuthorship W848155181A5064185915 @default.
- W848155181 hasAuthorship W848155181A5086664284 @default.
- W848155181 hasConcept C127413603 @default.
- W848155181 hasConcept C154945302 @default.
- W848155181 hasConcept C22212356 @default.
- W848155181 hasConcept C2777113093 @default.
- W848155181 hasConcept C2780156472 @default.
- W848155181 hasConcept C31972630 @default.
- W848155181 hasConcept C41008148 @default.
- W848155181 hasConceptScore W848155181C127413603 @default.
- W848155181 hasConceptScore W848155181C154945302 @default.
- W848155181 hasConceptScore W848155181C22212356 @default.
- W848155181 hasConceptScore W848155181C2777113093 @default.
- W848155181 hasConceptScore W848155181C2780156472 @default.
- W848155181 hasConceptScore W848155181C31972630 @default.
- W848155181 hasConceptScore W848155181C41008148 @default.
- W848155181 hasLocation W8481551811 @default.
- W848155181 hasOpenAccess W848155181 @default.
- W848155181 hasPrimaryLocation W8481551811 @default.
- W848155181 hasRelatedWork W1561580412 @default.
- W848155181 hasRelatedWork W2024127313 @default.
- W848155181 hasRelatedWork W2045236850 @default.
- W848155181 hasRelatedWork W2115991091 @default.
- W848155181 hasRelatedWork W2128694549 @default.
- W848155181 hasRelatedWork W2129431236 @default.
- W848155181 hasRelatedWork W2142681052 @default.
- W848155181 hasRelatedWork W2388731676 @default.
- W848155181 hasRelatedWork W2565999991 @default.
- W848155181 hasRelatedWork W2772397313 @default.
- W848155181 isParatext "false" @default.
- W848155181 isRetracted "false" @default.
- W848155181 magId "848155181" @default.
- W848155181 workType "book-chapter" @default.