Matches in SemOpenAlex for { <https://semopenalex.org/work/W848375797> ?p ?o ?g. }
- W848375797 endingPage "147" @default.
- W848375797 startingPage "139" @default.
- W848375797 abstract "We propose a graph cut (GC) based approach for combining annotations from multiple experts and segmenting Crohns disease (CD) tissues in magnetic resonance (MR) images. Random forest (RF) based semi supervised learning (SSL) predicts missing expert labels while a novel self consistency (SC) score quantifies the reliability of each expert label and also serves as the penalty cost in a second order Markov random field (MRF) cost function. The final consensus label is obtained by GC optimization. Experimental results on synthetic images and real CD patient data show our final segmentation to be more accurate than those obtained by competing methods. It also highlights the effectiveness of SC score in quantifying expert reliability and accuracy of SSL in predicting missing labels." @default.
- W848375797 created "2016-06-24" @default.
- W848375797 creator A5005259033 @default.
- W848375797 creator A5012764146 @default.
- W848375797 creator A5017221027 @default.
- W848375797 creator A5022556537 @default.
- W848375797 creator A5022890410 @default.
- W848375797 creator A5024305455 @default.
- W848375797 creator A5029617163 @default.
- W848375797 creator A5038199211 @default.
- W848375797 creator A5047929661 @default.
- W848375797 creator A5063901918 @default.
- W848375797 creator A5078933997 @default.
- W848375797 date "2014-01-01" @default.
- W848375797 modified "2023-10-01" @default.
- W848375797 title "Combining Multiple Expert Annotations Using Semi-supervised Learning and Graph Cuts for Crohn’s Disease Segmentation" @default.
- W848375797 cites W137456267 @default.
- W848375797 cites W1593298603 @default.
- W848375797 cites W1629845838 @default.
- W848375797 cites W1972702506 @default.
- W848375797 cites W2045390724 @default.
- W848375797 cites W2066828176 @default.
- W848375797 cites W2071353422 @default.
- W848375797 cites W2143516773 @default.
- W848375797 cites W2148347694 @default.
- W848375797 cites W2214908323 @default.
- W848375797 cites W2911964244 @default.
- W848375797 cites W63918057 @default.
- W848375797 doi "https://doi.org/10.1007/978-3-319-13692-9_13" @default.
- W848375797 hasPublicationYear "2014" @default.
- W848375797 type Work @default.
- W848375797 sameAs 848375797 @default.
- W848375797 citedByCount "7" @default.
- W848375797 countsByYear W8483757972018 @default.
- W848375797 countsByYear W8483757972020 @default.
- W848375797 countsByYear W8483757972021 @default.
- W848375797 crossrefType "book-chapter" @default.
- W848375797 hasAuthorship W848375797A5005259033 @default.
- W848375797 hasAuthorship W848375797A5012764146 @default.
- W848375797 hasAuthorship W848375797A5017221027 @default.
- W848375797 hasAuthorship W848375797A5022556537 @default.
- W848375797 hasAuthorship W848375797A5022890410 @default.
- W848375797 hasAuthorship W848375797A5024305455 @default.
- W848375797 hasAuthorship W848375797A5029617163 @default.
- W848375797 hasAuthorship W848375797A5038199211 @default.
- W848375797 hasAuthorship W848375797A5047929661 @default.
- W848375797 hasAuthorship W848375797A5063901918 @default.
- W848375797 hasAuthorship W848375797A5078933997 @default.
- W848375797 hasConcept C119857082 @default.
- W848375797 hasConcept C121332964 @default.
- W848375797 hasConcept C124504099 @default.
- W848375797 hasConcept C125308379 @default.
- W848375797 hasConcept C132525143 @default.
- W848375797 hasConcept C144133560 @default.
- W848375797 hasConcept C153180895 @default.
- W848375797 hasConcept C154945302 @default.
- W848375797 hasConcept C162853370 @default.
- W848375797 hasConcept C163258240 @default.
- W848375797 hasConcept C169258074 @default.
- W848375797 hasConcept C2776436953 @default.
- W848375797 hasConcept C2778045648 @default.
- W848375797 hasConcept C41008148 @default.
- W848375797 hasConcept C43214815 @default.
- W848375797 hasConcept C5134670 @default.
- W848375797 hasConcept C62520636 @default.
- W848375797 hasConcept C80444323 @default.
- W848375797 hasConcept C89600930 @default.
- W848375797 hasConcept C9357733 @default.
- W848375797 hasConcept C98763669 @default.
- W848375797 hasConceptScore W848375797C119857082 @default.
- W848375797 hasConceptScore W848375797C121332964 @default.
- W848375797 hasConceptScore W848375797C124504099 @default.
- W848375797 hasConceptScore W848375797C125308379 @default.
- W848375797 hasConceptScore W848375797C132525143 @default.
- W848375797 hasConceptScore W848375797C144133560 @default.
- W848375797 hasConceptScore W848375797C153180895 @default.
- W848375797 hasConceptScore W848375797C154945302 @default.
- W848375797 hasConceptScore W848375797C162853370 @default.
- W848375797 hasConceptScore W848375797C163258240 @default.
- W848375797 hasConceptScore W848375797C169258074 @default.
- W848375797 hasConceptScore W848375797C2776436953 @default.
- W848375797 hasConceptScore W848375797C2778045648 @default.
- W848375797 hasConceptScore W848375797C41008148 @default.
- W848375797 hasConceptScore W848375797C43214815 @default.
- W848375797 hasConceptScore W848375797C5134670 @default.
- W848375797 hasConceptScore W848375797C62520636 @default.
- W848375797 hasConceptScore W848375797C80444323 @default.
- W848375797 hasConceptScore W848375797C89600930 @default.
- W848375797 hasConceptScore W848375797C9357733 @default.
- W848375797 hasConceptScore W848375797C98763669 @default.
- W848375797 hasLocation W8483757971 @default.
- W848375797 hasOpenAccess W848375797 @default.
- W848375797 hasPrimaryLocation W8483757971 @default.
- W848375797 hasRelatedWork W1675950995 @default.
- W848375797 hasRelatedWork W2070570813 @default.
- W848375797 hasRelatedWork W2085626452 @default.
- W848375797 hasRelatedWork W2112454231 @default.
- W848375797 hasRelatedWork W2149623758 @default.