Matches in SemOpenAlex for { <https://semopenalex.org/work/W84854152> ?p ?o ?g. }
- W84854152 abstract "Statistical decision making has wide ranging applications, from communications and signal processing to econometrics and finance. In contrast to the classical one source one receiver paradigm, several applications have been identified in the recent past that require acquiring data from multiple sources or sensors. Information from the multiple sensors are transmitted to a remotely located receiver known as the fusion center which makes a global decision. Past work has largely focused on fusion of information from homogeneous sensors. This dissertation extends the formulation to the case when the local sensors may possess disparate sensing modalities. Both the theoretical and practical aspects of multimodal signal processing are considered. The first and foremost challenge is to ‘adequately’ model the joint statistics of such heterogeneous sensors. We propose the use of copula theory for this purpose. Copula models are general descriptors of dependence. They provide a way to characterize the nonlinear functional relationships between the multiple modalities, which are otherwise difficult to formalize. The important problem of selecting the ‘best’ copula function from a given set of valid copula densities is addressed, especially in the context of binary hypothesis testing problems. Both, the training-testing paradigm, where a training set is assumed to be available for learning the copula models prior to system deployment, as well as generalized likelihood ratio test (GLRT) based fusion rule for the online selection and estimation of copula parameters are considered. The developed theory is corroborated with extensive computer simulations as well as results on real-world data. Sensor observations (or features extracted thereof) are most often quantized before their transmission to the fusion center for bandwidth and power conservation. A detection scheme is proposed for this problem assuming unifom scalar quantizers at each sensor. The designed rule is applicable for both binary and multibit local sensor decisions. An alternative suboptimal but computationally efficient fusion rule is also i designed which involves injecting a deliberate disturbance to the local sensor decisions before fusion. The rule is based on Widrow’s statistical theory of quantization. Addition of controlled noise helps to linearize the higly nonlinear quantization process thus resulting in computational savings. It is shown that although the introduction of external noise does cause a reduction in the received signal to noise ratio, the proposed approach can be highly accurate when the input signals have bandlimited characteristic functions, and the number of quantization levels is large. The problem of quantifying neural synchrony using copula functions is also investigated. It has been widely accepted that multiple simultaneously recorded electroencephalographic signals exhibit nonlinear and non-Gaussian statistics. While the existing and popular measures such as correlation coefficient, corr-entropy coefficient, coh-entropy and mutual information are limited to being bivariate and hence applicable only to pairs of channels, measures such as Granger causality, even though multivariate, fail to account for any nonlinear inter-channel dependence. The application of copula theory helps alleviate both these limitations. The problem of distinguishing patients with mild cognitive impairment from the age-matched control subjects is also considered. Results show that the copula derived synchrony measures when used in conjunction with other synchrony measures improve the detection of Alzheimer’s disease onset." @default.
- W84854152 created "2016-06-24" @default.
- W84854152 creator A5090539675 @default.
- W84854152 date "2011-01-01" @default.
- W84854152 modified "2023-09-26" @default.
- W84854152 title "Decision-Making with Heterogeneous Sensors - A Copula Based Approach" @default.
- W84854152 cites W1264452269 @default.
- W84854152 cites W1520494951 @default.
- W84854152 cites W152055444 @default.
- W84854152 cites W1525038591 @default.
- W84854152 cites W1525535255 @default.
- W84854152 cites W1543495496 @default.
- W84854152 cites W1560013842 @default.
- W84854152 cites W1567669715 @default.
- W84854152 cites W1576817603 @default.
- W84854152 cites W1607881722 @default.
- W84854152 cites W1667165204 @default.
- W84854152 cites W1784695092 @default.
- W84854152 cites W1821811819 @default.
- W84854152 cites W1827554748 @default.
- W84854152 cites W1919971835 @default.
- W84854152 cites W1965392255 @default.
- W84854152 cites W1965422373 @default.
- W84854152 cites W1968590503 @default.
- W84854152 cites W1972514540 @default.
- W84854152 cites W1975266778 @default.
- W84854152 cites W1975836354 @default.
- W84854152 cites W1982401839 @default.
- W84854152 cites W1987387046 @default.
- W84854152 cites W1988572854 @default.
- W84854152 cites W1988949556 @default.
- W84854152 cites W1990534247 @default.
- W84854152 cites W1993625798 @default.
- W84854152 cites W1994063673 @default.
- W84854152 cites W2007248425 @default.
- W84854152 cites W2007919714 @default.
- W84854152 cites W2008651162 @default.
- W84854152 cites W2010219725 @default.
- W84854152 cites W2011314675 @default.
- W84854152 cites W2015245929 @default.
- W84854152 cites W2015339214 @default.
- W84854152 cites W2015394094 @default.
- W84854152 cites W2019841176 @default.
- W84854152 cites W2026291472 @default.
- W84854152 cites W2037994526 @default.
- W84854152 cites W2043170140 @default.
- W84854152 cites W2045638068 @default.
- W84854152 cites W2050102109 @default.
- W84854152 cites W2052199757 @default.
- W84854152 cites W2053101950 @default.
- W84854152 cites W2056106477 @default.
- W84854152 cites W2056129277 @default.
- W84854152 cites W2059049776 @default.
- W84854152 cites W2073315293 @default.
- W84854152 cites W2075554752 @default.
- W84854152 cites W2075639868 @default.
- W84854152 cites W2078237481 @default.
- W84854152 cites W2086855863 @default.
- W84854152 cites W2094730234 @default.
- W84854152 cites W2098566412 @default.
- W84854152 cites W2099151709 @default.
- W84854152 cites W2100403032 @default.
- W84854152 cites W2100412944 @default.
- W84854152 cites W2100561338 @default.
- W84854152 cites W2102006361 @default.
- W84854152 cites W2102605525 @default.
- W84854152 cites W2104478296 @default.
- W84854152 cites W2104556565 @default.
- W84854152 cites W2105582566 @default.
- W84854152 cites W2106488367 @default.
- W84854152 cites W2109124605 @default.
- W84854152 cites W2111303254 @default.
- W84854152 cites W2113158412 @default.
- W84854152 cites W2116972936 @default.
- W84854152 cites W2118020555 @default.
- W84854152 cites W2119436275 @default.
- W84854152 cites W2120100126 @default.
- W84854152 cites W2121154010 @default.
- W84854152 cites W2127628742 @default.
- W84854152 cites W2127810129 @default.
- W84854152 cites W2127958806 @default.
- W84854152 cites W2129450987 @default.
- W84854152 cites W2129905273 @default.
- W84854152 cites W2135352374 @default.
- W84854152 cites W2138097141 @default.
- W84854152 cites W2142824200 @default.
- W84854152 cites W2145215249 @default.
- W84854152 cites W2150907703 @default.
- W84854152 cites W2151007095 @default.
- W84854152 cites W2151393950 @default.
- W84854152 cites W2152617511 @default.
- W84854152 cites W2152690055 @default.
- W84854152 cites W2154506887 @default.
- W84854152 cites W2154636774 @default.
- W84854152 cites W2155653793 @default.
- W84854152 cites W2155673555 @default.
- W84854152 cites W2156174518 @default.
- W84854152 cites W2157586156 @default.
- W84854152 cites W2160838563 @default.
- W84854152 cites W2162736596 @default.