Matches in SemOpenAlex for { <https://semopenalex.org/work/W84923915> ?p ?o ?g. }
- W84923915 abstract "The aim of this work was to investigate signal processing and analysis techniques for Ground Penetrating Radar (GPR) and its use in civil engineering and construction industry. GPR is the general term applied to techniques which employ radio waves, typically in the Mega Hertz and Giga Hertz range, to map structures and features buried in the ground or in manmade structures. GPR measurements can suffer from large amount of noise. This is primarily caused by interference from other radio-wave-emitting devices (e.g., cell phones, radios, etc.) that are present in the surrounding area of the GPR system during data collection. In addition to noise, presence of clutter – reflections from other non-target objects buried underground in the vicinity of the target can make GPR measurement difficult to understand and interpret, even for the skilled human, GPR analysts.This thesis is concerned with the improvements and processes that can be applied to GPR data in order to enhance target detection and characterisation process particularly with multivariate signal processing techniques. Those primarily include Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Both techniques have been investigated, implemented and compared regarding their abilities to separate the target originating signals from the noise and clutter type signals present in the data. Combination of PCA and ICA (SVDPICA) and two-dimensional PCA (2DPCA) are the specific approaches adopted and further developed in this work. Ability of those methods to reduce the amount of clutter and unwanted signals present in GPR data have been investigated and reported in this thesis, suggesting that their use in automated analysis of GPR images is a possibility.Further analysis carried out in this work concentrated on analysing the performance of developed multivariate signal processing techniques and at the same time investigating the possibility of identifying and characterising the features of interest in pre-processed GPR images. The driving idea behind this part of work was to extract the resonant modes present in the individual traces of each GPR image and to use properties of those poles to characterise target. Three related but different methods have been implemented and applied in this work – Extended Prony, Linear Prediction Singular Value Decomposition and Matrix Pencil methods. In addition to these approaches, PCA technique has been used to reduce dimensionality of extracted traces and to compare signals measured in various experimental setups. Performance analysis shows that Matrix Pencil offers the best results." @default.
- W84923915 created "2016-06-24" @default.
- W84923915 creator A5048143719 @default.
- W84923915 date "2013-01-01" @default.
- W84923915 modified "2023-09-23" @default.
- W84923915 title "Computational methods for processing ground penetrating radar data" @default.
- W84923915 cites W1491220419 @default.
- W84923915 cites W1514159701 @default.
- W84923915 cites W1530384264 @default.
- W84923915 cites W1537662695 @default.
- W84923915 cites W1548802052 @default.
- W84923915 cites W1555711139 @default.
- W84923915 cites W1564049492 @default.
- W84923915 cites W1570895503 @default.
- W84923915 cites W1582934392 @default.
- W84923915 cites W1776572779 @default.
- W84923915 cites W1841379813 @default.
- W84923915 cites W1967868525 @default.
- W84923915 cites W1975451891 @default.
- W84923915 cites W1978831713 @default.
- W84923915 cites W1978845392 @default.
- W84923915 cites W1998239584 @default.
- W84923915 cites W1998792525 @default.
- W84923915 cites W2012470170 @default.
- W84923915 cites W2025860092 @default.
- W84923915 cites W2065656021 @default.
- W84923915 cites W2076094691 @default.
- W84923915 cites W2076978869 @default.
- W84923915 cites W2091827823 @default.
- W84923915 cites W2096710051 @default.
- W84923915 cites W2100115174 @default.
- W84923915 cites W2102544846 @default.
- W84923915 cites W2108125227 @default.
- W84923915 cites W2108365241 @default.
- W84923915 cites W2108384452 @default.
- W84923915 cites W2115159269 @default.
- W84923915 cites W2116247770 @default.
- W84923915 cites W2121647436 @default.
- W84923915 cites W2123376510 @default.
- W84923915 cites W2123649031 @default.
- W84923915 cites W2127411941 @default.
- W84923915 cites W2133665775 @default.
- W84923915 cites W2139392257 @default.
- W84923915 cites W2141224535 @default.
- W84923915 cites W2142063750 @default.
- W84923915 cites W2142388559 @default.
- W84923915 cites W2147863925 @default.
- W84923915 cites W2147955712 @default.
- W84923915 cites W2150619001 @default.
- W84923915 cites W2154204281 @default.
- W84923915 cites W2154845480 @default.
- W84923915 cites W2157352292 @default.
- W84923915 cites W2158764692 @default.
- W84923915 cites W2159269332 @default.
- W84923915 cites W2161214672 @default.
- W84923915 cites W2164345547 @default.
- W84923915 cites W2165887549 @default.
- W84923915 cites W2166186151 @default.
- W84923915 cites W2166743408 @default.
- W84923915 cites W2315796932 @default.
- W84923915 cites W2338785377 @default.
- W84923915 cites W260767608 @default.
- W84923915 cites W2797361705 @default.
- W84923915 cites W2799061466 @default.
- W84923915 cites W2906615456 @default.
- W84923915 cites W2990598036 @default.
- W84923915 cites W3127615120 @default.
- W84923915 cites W3148274409 @default.
- W84923915 cites W566370799 @default.
- W84923915 cites W596928057 @default.
- W84923915 cites W645175818 @default.
- W84923915 cites W2301066244 @default.
- W84923915 cites W2307990858 @default.
- W84923915 hasPublicationYear "2013" @default.
- W84923915 type Work @default.
- W84923915 sameAs 84923915 @default.
- W84923915 citedByCount "2" @default.
- W84923915 countsByYear W849239152017 @default.
- W84923915 countsByYear W849239152018 @default.
- W84923915 crossrefType "dissertation" @default.
- W84923915 hasAuthorship W84923915A5048143719 @default.
- W84923915 hasConcept C104267543 @default.
- W84923915 hasConcept C115961682 @default.
- W84923915 hasConcept C127313418 @default.
- W84923915 hasConcept C127413603 @default.
- W84923915 hasConcept C132094186 @default.
- W84923915 hasConcept C138827492 @default.
- W84923915 hasConcept C154945302 @default.
- W84923915 hasConcept C199360897 @default.
- W84923915 hasConcept C27438332 @default.
- W84923915 hasConcept C2779843651 @default.
- W84923915 hasConcept C41008148 @default.
- W84923915 hasConcept C51432778 @default.
- W84923915 hasConcept C554190296 @default.
- W84923915 hasConcept C62649853 @default.
- W84923915 hasConcept C71813955 @default.
- W84923915 hasConcept C76155785 @default.
- W84923915 hasConcept C77088390 @default.
- W84923915 hasConcept C99498987 @default.
- W84923915 hasConceptScore W84923915C104267543 @default.