Matches in SemOpenAlex for { <https://semopenalex.org/work/W849404001> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W849404001 endingPage "379" @default.
- W849404001 startingPage "367" @default.
- W849404001 abstract "Sentiment analysis has become a leading research domain with the advent of Web 2.0 where Web users express their opinions in user forums, blogs, discussion boards, and review sites. The online information is considered to be a valuable source for decision making, improving the quality of service, and helping the service providers to enhance their competitiveness. Since the processing of high-dimensional text data is not scalable, different feature selection mechanisms are being used to confine the study to only most informative features. These features are then used to train the classifier to improve the accuracy of sentiment-based classification. This paper explores six feature selection mechanisms (IG, GR, CHI, OneR, Relief-F, and SAE) with five different machine learning classifiers (SVM, NB, DT, K-NN, and ME) thereby providing Accuracy, on the movie review data set for each. Comparative results show that Naive Bayes (NB) outperforms other classifiers and works better for Gain Ratio (GR) and Significance Attribute Evaluation (SAE) feature selection method." @default.
- W849404001 created "2016-06-24" @default.
- W849404001 creator A5024737663 @default.
- W849404001 creator A5059314480 @default.
- W849404001 creator A5074175417 @default.
- W849404001 date "2015-01-01" @default.
- W849404001 modified "2023-09-25" @default.
- W849404001 title "A Comparative Study of Feature Selection and Machine Learning Methods for Sentiment Classification on Movie Data Set" @default.
- W849404001 cites W1500895378 @default.
- W849404001 cites W1808640434 @default.
- W849404001 cites W1977561632 @default.
- W849404001 cites W2012070465 @default.
- W849404001 cites W2021137987 @default.
- W849404001 cites W2027147487 @default.
- W849404001 cites W2063596712 @default.
- W849404001 cites W2096707493 @default.
- W849404001 cites W2103000160 @default.
- W849404001 cites W2103870675 @default.
- W849404001 cites W2114524997 @default.
- W849404001 cites W2143455647 @default.
- W849404001 cites W2163455955 @default.
- W849404001 cites W2166706824 @default.
- W849404001 doi "https://doi.org/10.1007/978-81-322-2268-2_39" @default.
- W849404001 hasPublicationYear "2015" @default.
- W849404001 type Work @default.
- W849404001 sameAs 849404001 @default.
- W849404001 citedByCount "10" @default.
- W849404001 countsByYear W8494040012016 @default.
- W849404001 countsByYear W8494040012017 @default.
- W849404001 countsByYear W8494040012018 @default.
- W849404001 countsByYear W8494040012019 @default.
- W849404001 countsByYear W8494040012020 @default.
- W849404001 countsByYear W8494040012021 @default.
- W849404001 crossrefType "book-chapter" @default.
- W849404001 hasAuthorship W849404001A5024737663 @default.
- W849404001 hasAuthorship W849404001A5059314480 @default.
- W849404001 hasAuthorship W849404001A5074175417 @default.
- W849404001 hasConcept C119857082 @default.
- W849404001 hasConcept C148483581 @default.
- W849404001 hasConcept C153180895 @default.
- W849404001 hasConcept C154945302 @default.
- W849404001 hasConcept C177264268 @default.
- W849404001 hasConcept C199360897 @default.
- W849404001 hasConcept C204321447 @default.
- W849404001 hasConcept C41008148 @default.
- W849404001 hasConcept C66402592 @default.
- W849404001 hasConcept C81917197 @default.
- W849404001 hasConceptScore W849404001C119857082 @default.
- W849404001 hasConceptScore W849404001C148483581 @default.
- W849404001 hasConceptScore W849404001C153180895 @default.
- W849404001 hasConceptScore W849404001C154945302 @default.
- W849404001 hasConceptScore W849404001C177264268 @default.
- W849404001 hasConceptScore W849404001C199360897 @default.
- W849404001 hasConceptScore W849404001C204321447 @default.
- W849404001 hasConceptScore W849404001C41008148 @default.
- W849404001 hasConceptScore W849404001C66402592 @default.
- W849404001 hasConceptScore W849404001C81917197 @default.
- W849404001 hasLocation W8494040011 @default.
- W849404001 hasOpenAccess W849404001 @default.
- W849404001 hasPrimaryLocation W8494040011 @default.
- W849404001 hasRelatedWork W27971500 @default.
- W849404001 hasRelatedWork W3107474891 @default.
- W849404001 hasRelatedWork W3174196512 @default.
- W849404001 hasRelatedWork W3192794374 @default.
- W849404001 hasRelatedWork W3200179079 @default.
- W849404001 hasRelatedWork W4200526184 @default.
- W849404001 hasRelatedWork W4212852473 @default.
- W849404001 hasRelatedWork W4225360065 @default.
- W849404001 hasRelatedWork W4307883119 @default.
- W849404001 hasRelatedWork W2345184372 @default.
- W849404001 isParatext "false" @default.
- W849404001 isRetracted "false" @default.
- W849404001 magId "849404001" @default.
- W849404001 workType "book-chapter" @default.