Matches in SemOpenAlex for { <https://semopenalex.org/work/W84940752> ?p ?o ?g. }
- W84940752 abstract "Cyanobacterial blooms are often associated with eutrophication of lakes and waterbodies which degrade the water quality due to chronic and episodic inputs of nutrients, water stratifications and climatic changes. Increasing terrestrial application of photosynthesis-inhibiting herbicides that enter water bodies during/after heavy rain, can affect the photosynthetic capacity and growth of phytoplankton at sub-lethal concentrations. As herbicide sensitivity of phytoplankton varies among species, their presence can alter phytoplankton community structure to favour more tolerant species, or particular groups such as cyanobacteria which are considered more tolerant of photosynthesis-inhibiting herbicides. This study examined the potential for photosynthesis-inhibiting herbicides to promote cyanobacterial blooms in temperate lakes and waterways. The most commonly applied triazine herbicide, atrazine, was used due to its solubility, mobility and persistence in temperate environments. The relative effects of atrazine on the growth of selected planktonic green algae and cyanobacteria (primarily bloom-forming Anabaena species) were investigated using laboratory mono-cultures and two-species competition cultures.In the second chapter, the relative tolerance to atrazine of some common freshwater green algae (Selenastrum capricornutum, Desmodesmus asymmetricus and Chlorella protothecoides) and cyanobacteria of the genus Anabaena, particularly Anabaena circinalis were compared in single-species assays using in-vivo fluorescence estimation of growth rates. While the green algae species examined displayed higher intrinsic growth rates than Anabaena strains, their relative tolerance to atrazine (50 – 250 μg L-1) expressed as EC50 was of similar magnitude and range (72-140 μg L-1) compared to the seven Anabaena strains (59 - 111 μg L-1 ) under light and temperature conditions typical of temperate mid-latitude summer conditions. However, atrazine tolerance varied significantly among the 10 species examined but there was no significant difference in mean atrazine tolerance between the two groups, the cyanobacteria and green algae indicating that the selective effects of atrazine operate at a species/strain level rather than more generally favouring cyanobacteria over green algae. The third chapter adapted and tested a high through-put microplate-based approach as a rapid and reliable phytoplankton herbicide sensitivity assay that could be used to examine the influence of herbicides on the growth of green algae and cyanobacteria in two-species competition cultures. The assay was based on in-vivo fluorescence quantification of chlorophyll a and phycocyanin. Minimum detection limits and correlations of cell concentration and fluorescence were established for two species of eukaryotic green algae and seven Anabaena strains. Calibration curves were established for the seven species examined and the detection limits and ranges were sufficient for reliable detection and simultaneous estimation of cyanobacteria and green algal growth rates in two-species competition laboratory cultures. Two-species competition culture experiments were carried out using A. circinalis grown with the green algae Selenastrum capricornutum or Desmodesmus asymmetricus. The growth rate of A. circinalis strains showed a 20% increase in exponential growth rate compared to mono-culture controls, whereas the green algal species growth rate was reduced by 13-17%, indicating that allelopathic interactions may alter the selective effects of herbicides on phytoplankton community structure.In the fourth chapter, relative inhibition of the green alga, Desmodesmus asymmetricus and the cyanobacterium A. circinalis by atrazine was examined at different combinations of light (high = 100, low =30 μmole photon m-2 s-1) and temperature (high = 24°C ±1 and low= 18±1°C) when grown separately or in two-species competition cultures. When grown separately, A. circinalis showed similar or higher tolerance (EC50) to atrazine as D. asymmetricus and maintained an increasingly higher growth rate with increasing atrazine concentration under all conditions, except at low light and high temperature where the growth rate of D. asymmetricus was higher at atrazine concentrations >150 μg L-1. When grown in competition, A. circinalis was favoured in the presence of atrazine under high light conditions regardless of temperature, and D. asymmetricus was favoured by the presence of atrazine (or equally tolerant) under low light regardless of temperature. Overall, the presence of atrazine favoured A. circinalis at high light with the largest relative effect at low temperature. This may explain how temperate mid-latitude summer blooms of Anabaena circinalis can maintain their relative community dominance during declining autumn temperatures in lakes and rivers.The fifth chapter used two-species competition cultures with different relative starting concentrations of D. asymmetricus and A. circinalis to determine whether the outcome of green algae/cyanobacteria growth competition could be reversed by atrazine starting from scenarios of different relative dominance (4:1, equal, or 1:4 starting concentration of each species). In the absence of atrazine, D. asymmetricus dominated 10 day growth competition experiments from scenarios from both dominant and equal starting concentration, whereas A. circinalis dominated only in cultures in which it started with 1:4 dominance. In the presence of low concentrations of atrazine (10-60 μg L-1), A. circinalis dominated over D. asymmetricus regardless of the species dominance at the start of the experiment. The relative patterns of growth in the experiments suggested that the dominant factor during exponential growth phase (first 5-6 days) was inhibition of both species by atrazine but more severe inhibition for D. asymmetricus. After day 5 inhibition of D. asymmetricus by the allelopathic activity of A. circinalis became the dominant factor. These experiments show that the allelopathic activity of A. circinalis and low concentrations of atrazine (10μg L-1) combine reverse growth competition outcomes even from a position of green algal dominance, and indicate a mechanism by which low concentrations of herbicides can shift algal communities toward cyanobacterial dominance in temperate mid-latitude lakes and rivers.The influences of photosynthetic-inhibiting herbicides in combination with other adaptive physiological strategies/mechanisms that promote cyanobacterial blooms are also discussed." @default.
- W84940752 created "2016-06-24" @default.
- W84940752 creator A5078526614 @default.
- W84940752 date "2013-08-01" @default.
- W84940752 modified "2023-09-27" @default.
- W84940752 title "The relative effects of the herbicide atrazine on selected microalgae" @default.
- W84940752 cites W114572608 @default.
- W84940752 cites W138041440 @default.
- W84940752 cites W1422674667 @default.
- W84940752 cites W1480721056 @default.
- W84940752 cites W1505698969 @default.
- W84940752 cites W1506480265 @default.
- W84940752 cites W1514858398 @default.
- W84940752 cites W1576815711 @default.
- W84940752 cites W172932992 @default.
- W84940752 cites W1941554123 @default.
- W84940752 cites W1954025755 @default.
- W84940752 cites W1963868957 @default.
- W84940752 cites W1964210708 @default.
- W84940752 cites W1969550626 @default.
- W84940752 cites W1970031388 @default.
- W84940752 cites W1971799495 @default.
- W84940752 cites W1972014892 @default.
- W84940752 cites W1974469443 @default.
- W84940752 cites W1974820625 @default.
- W84940752 cites W1975858893 @default.
- W84940752 cites W1975891551 @default.
- W84940752 cites W1976121682 @default.
- W84940752 cites W1976305047 @default.
- W84940752 cites W1983279439 @default.
- W84940752 cites W1983492750 @default.
- W84940752 cites W1984842291 @default.
- W84940752 cites W1986185520 @default.
- W84940752 cites W1986383280 @default.
- W84940752 cites W1987314170 @default.
- W84940752 cites W1987578127 @default.
- W84940752 cites W1989669747 @default.
- W84940752 cites W1989770265 @default.
- W84940752 cites W1993376580 @default.
- W84940752 cites W1994092394 @default.
- W84940752 cites W1997808350 @default.
- W84940752 cites W1999103554 @default.
- W84940752 cites W1999458444 @default.
- W84940752 cites W2002840550 @default.
- W84940752 cites W2005004180 @default.
- W84940752 cites W2005086002 @default.
- W84940752 cites W2005669817 @default.
- W84940752 cites W2007135985 @default.
- W84940752 cites W2007906848 @default.
- W84940752 cites W2009117800 @default.
- W84940752 cites W2009709560 @default.
- W84940752 cites W2010150267 @default.
- W84940752 cites W2010162785 @default.
- W84940752 cites W2010757681 @default.
- W84940752 cites W2012526660 @default.
- W84940752 cites W2013462934 @default.
- W84940752 cites W2015934750 @default.
- W84940752 cites W2016470002 @default.
- W84940752 cites W2017466463 @default.
- W84940752 cites W2019671542 @default.
- W84940752 cites W2020216779 @default.
- W84940752 cites W2021675409 @default.
- W84940752 cites W2022612167 @default.
- W84940752 cites W2023156794 @default.
- W84940752 cites W2023915437 @default.
- W84940752 cites W2027344877 @default.
- W84940752 cites W2028285269 @default.
- W84940752 cites W2030823567 @default.
- W84940752 cites W2033576434 @default.
- W84940752 cites W2033591271 @default.
- W84940752 cites W2037544591 @default.
- W84940752 cites W2037808800 @default.
- W84940752 cites W2039964083 @default.
- W84940752 cites W2042069588 @default.
- W84940752 cites W2042306810 @default.
- W84940752 cites W2042559731 @default.
- W84940752 cites W2047944471 @default.
- W84940752 cites W2048820569 @default.
- W84940752 cites W2049639534 @default.
- W84940752 cites W2049688675 @default.
- W84940752 cites W2053235402 @default.
- W84940752 cites W2054703169 @default.
- W84940752 cites W2054917353 @default.
- W84940752 cites W2055020917 @default.
- W84940752 cites W2056254772 @default.
- W84940752 cites W2056506782 @default.
- W84940752 cites W2056831952 @default.
- W84940752 cites W2057810118 @default.
- W84940752 cites W2057895276 @default.
- W84940752 cites W2059703953 @default.
- W84940752 cites W2059993021 @default.
- W84940752 cites W2060554669 @default.
- W84940752 cites W2060980337 @default.
- W84940752 cites W2062064406 @default.
- W84940752 cites W2062752196 @default.
- W84940752 cites W2063050196 @default.
- W84940752 cites W2063971833 @default.
- W84940752 cites W2064678052 @default.
- W84940752 cites W2066579884 @default.
- W84940752 cites W2066729628 @default.