Matches in SemOpenAlex for { <https://semopenalex.org/work/W849918977> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W849918977 abstract "Minimum temperature predictions are required for agricultural producers in order to assess the magnitude of potential frost events. Several regression models can be used for the estimation problem at a single location but one common problem is the amount of required data for training, testing and validation. Nowadays, sensor networks can be used to gather environmental data from multiple locations. In order to alleviate the amount of data needed to model a single site, we can combine information from the different sources and then estimate the performance of the estimator using hold-out test sites. A mixture of Gaussian Processes (MGP) model is proposed for the distributed estimation problem and an efficient Hybrid Monte Carlo approach is also proposed for the estimation of the model parameters." @default.
- W849918977 created "2016-06-24" @default.
- W849918977 creator A5050804685 @default.
- W849918977 creator A5077127224 @default.
- W849918977 date "2015-01-01" @default.
- W849918977 modified "2023-10-16" @default.
- W849918977 title "Distributed Minimum Temperature Prediction Using Mixtures of Gaussian Processes" @default.
- W849918977 cites W1499730991 @default.
- W849918977 cites W1969422238 @default.
- W849918977 cites W1977905297 @default.
- W849918977 cites W1979526284 @default.
- W849918977 cites W1983957710 @default.
- W849918977 cites W2009332171 @default.
- W849918977 cites W2054459031 @default.
- W849918977 cites W2120447609 @default.
- W849918977 cites W585085135 @default.
- W849918977 doi "https://doi.org/10.1007/978-3-319-15994-2_49" @default.
- W849918977 hasPublicationYear "2015" @default.
- W849918977 type Work @default.
- W849918977 sameAs 849918977 @default.
- W849918977 citedByCount "0" @default.
- W849918977 crossrefType "book-chapter" @default.
- W849918977 hasAuthorship W849918977A5050804685 @default.
- W849918977 hasAuthorship W849918977A5077127224 @default.
- W849918977 hasBestOaLocation W8499189771 @default.
- W849918977 hasConcept C121332964 @default.
- W849918977 hasConcept C121864883 @default.
- W849918977 hasConcept C163716315 @default.
- W849918977 hasConcept C192562407 @default.
- W849918977 hasConcept C39432304 @default.
- W849918977 hasConcept C41008148 @default.
- W849918977 hasConcept C62520636 @default.
- W849918977 hasConceptScore W849918977C121332964 @default.
- W849918977 hasConceptScore W849918977C121864883 @default.
- W849918977 hasConceptScore W849918977C163716315 @default.
- W849918977 hasConceptScore W849918977C192562407 @default.
- W849918977 hasConceptScore W849918977C39432304 @default.
- W849918977 hasConceptScore W849918977C41008148 @default.
- W849918977 hasConceptScore W849918977C62520636 @default.
- W849918977 hasLocation W8499189771 @default.
- W849918977 hasLocation W8499189772 @default.
- W849918977 hasLocation W8499189773 @default.
- W849918977 hasLocation W8499189774 @default.
- W849918977 hasOpenAccess W849918977 @default.
- W849918977 hasPrimaryLocation W8499189771 @default.
- W849918977 hasRelatedWork W1966845973 @default.
- W849918977 hasRelatedWork W1980746620 @default.
- W849918977 hasRelatedWork W2073372811 @default.
- W849918977 hasRelatedWork W2602803977 @default.
- W849918977 hasRelatedWork W2899084033 @default.
- W849918977 hasRelatedWork W2997975729 @default.
- W849918977 hasRelatedWork W4296623967 @default.
- W849918977 hasRelatedWork W4362578997 @default.
- W849918977 hasRelatedWork W4385234193 @default.
- W849918977 hasRelatedWork W82723519 @default.
- W849918977 isParatext "false" @default.
- W849918977 isRetracted "false" @default.
- W849918977 magId "849918977" @default.
- W849918977 workType "book-chapter" @default.