Matches in SemOpenAlex for { <https://semopenalex.org/work/W85128250> ?p ?o ?g. }
- W85128250 abstract "Author(s): Vinzant, Cynthia Leslie | Advisor(s): Sturmfels, Bernd | Abstract: In the past twenty years, a strong interplay has developed between convex optimization and algebraic geometry. Algebraic geometry provides necessary tools to analyze the behavior of solutions, the geometry of feasible sets, and to develop new relaxations for hard non-convex problems. On the other hand, numerical solvers for convex optimization have led to new fast algorithms in real algebraic geometry. In Chapter 1, we introduce some of the necessary background in convex optimization and real algebraic geometry and discuss some of the important results and questions in their intersection. One of the biggest of which is: when can a convex closed semialgebraic set be the feasible set of a semidefinite program and how can one construct such a representation?In Chapter 2, we explore the consequences of an ideal having a real radical initial ideal, both for the geometry its real variety and as an application to sums of squares representations of polynomials. We show that if the initial ideal of an ideal is real radical for a vector in the tropical variety, then this vectors belongs to logarithmic set of its real variety. We also give algebraic sufficient conditions for a ray to be in the logarithmic limit set of a more general semialgebraic set. If, in addition, the ray has positive coordinates, then the corresponding quadratic module is stable, which has consequences for problems in polynomial optimization. In particular, if an ideal has a is real radical initial ideal for some positive weight vector, then the preorder generated by the ideal is stable. This provides a method for checking the conditions for stability given by Powers and Scheiderer. In Chapter 3, we examine fundamental objects in convex algebraic geometry, such as definite determinantal representations and sums of squares, in the special case of plane quartics. A smooth quartic curve in the complex projective plane has 36 inequivalent representations as a symmetric determinant of linear forms and 63 representations as a sum of three squares. These correspond to Cayley octads and Steiner complexes respectively. We present exact algorithms for computing these objects from the 28 bitangents. This expresses Vinnikov quartics as spectrahedra and positive quartics as Gram matrices. We explore the geometry of Gram spectrahedra and discuss methods for computing determinantal representations. Interwoven are many examples and an exposition of much of the 19th century theory of plane quartics.In Chapter 4, we study real algebraic curves that control interior point methods in linear programming. The central curve of a linear program is an algebraic curve specified by linear and quadratic constraints arising from complementary slackness. It is the union of the various central paths for minimizing or maximizing the cost function over any region in the associated hyperplane arrangement. We determine the degree, arithmetic genus and defining prime ideal of the central curve, thereby answering a question of Bayer and Lagarias. These invariants, along with the degree of the Gauss image of the curve, are expressed in terms of the matroid of the input matrix. Extending work of Dedieu, Malajovich and Shub, this yields an instance-specific bound on the total curvature of the central path, a quantity relevant for interior point methods. The global geometry of central curves is studied in detail.Chapter 5 has two parts. In the first, we study the k^th symmetric trigonometric moment curve and its convex hull, the Barvinok-Novik orbitope. In 2008, Barvinok and Novik introduce these objects and show that there is some threshold so that for two points on S^1 with arclength below this threshold the line segment between their lifts to the curve form an edge on the Barvinok-Novik orbitope and for points with arclength above this threshold, their lifts do not form an edge. They also give a lower bound for this threshold and conjecture that this bound is tight. Results of Smilansky prove tightness for k=2. Here we prove this conjecture for all k. In the second part, we discuss the convex hull of a general parametrized curve. These convex hulls can be written as spectrahedral shadows and, as we shall demonstrate, one can compute and effectively describe their faces." @default.
- W85128250 created "2016-06-24" @default.
- W85128250 creator A5008168066 @default.
- W85128250 date "2011-01-01" @default.
- W85128250 modified "2023-09-27" @default.
- W85128250 title "Real Algebraic Geometry in Convex Optimization" @default.
- W85128250 cites W1480381100 @default.
- W85128250 cites W1492860244 @default.
- W85128250 cites W1495280678 @default.
- W85128250 cites W1496208319 @default.
- W85128250 cites W1504855531 @default.
- W85128250 cites W1518039036 @default.
- W85128250 cites W1520007244 @default.
- W85128250 cites W1527801057 @default.
- W85128250 cites W1546253563 @default.
- W85128250 cites W1550331971 @default.
- W85128250 cites W1571273789 @default.
- W85128250 cites W1574151794 @default.
- W85128250 cites W1584154100 @default.
- W85128250 cites W1592751003 @default.
- W85128250 cites W1599288848 @default.
- W85128250 cites W1609080720 @default.
- W85128250 cites W1741136470 @default.
- W85128250 cites W1764048552 @default.
- W85128250 cites W18170965 @default.
- W85128250 cites W188858573 @default.
- W85128250 cites W1965826347 @default.
- W85128250 cites W1967184028 @default.
- W85128250 cites W1967344706 @default.
- W85128250 cites W1967960319 @default.
- W85128250 cites W1982678715 @default.
- W85128250 cites W1985123706 @default.
- W85128250 cites W1985985194 @default.
- W85128250 cites W1988596207 @default.
- W85128250 cites W1989001889 @default.
- W85128250 cites W1992224331 @default.
- W85128250 cites W1992306716 @default.
- W85128250 cites W2004505953 @default.
- W85128250 cites W2006791953 @default.
- W85128250 cites W2008564600 @default.
- W85128250 cites W2008772536 @default.
- W85128250 cites W2015734571 @default.
- W85128250 cites W2015942127 @default.
- W85128250 cites W2016403269 @default.
- W85128250 cites W2025202934 @default.
- W85128250 cites W2036887860 @default.
- W85128250 cites W2037434168 @default.
- W85128250 cites W2039415399 @default.
- W85128250 cites W2039539620 @default.
- W85128250 cites W2039552749 @default.
- W85128250 cites W2043027963 @default.
- W85128250 cites W2045652876 @default.
- W85128250 cites W2048002525 @default.
- W85128250 cites W2052895085 @default.
- W85128250 cites W2059969305 @default.
- W85128250 cites W2059998776 @default.
- W85128250 cites W2063785726 @default.
- W85128250 cites W2067959964 @default.
- W85128250 cites W2081659888 @default.
- W85128250 cites W2085951741 @default.
- W85128250 cites W2088667958 @default.
- W85128250 cites W2089457275 @default.
- W85128250 cites W2092326271 @default.
- W85128250 cites W2094425611 @default.
- W85128250 cites W2097743263 @default.
- W85128250 cites W2103394960 @default.
- W85128250 cites W2107580946 @default.
- W85128250 cites W2115900859 @default.
- W85128250 cites W2116800096 @default.
- W85128250 cites W2125690626 @default.
- W85128250 cites W2131440188 @default.
- W85128250 cites W2133314801 @default.
- W85128250 cites W2133404041 @default.
- W85128250 cites W2150929012 @default.
- W85128250 cites W2152309892 @default.
- W85128250 cites W2153400929 @default.
- W85128250 cites W2160377718 @default.
- W85128250 cites W2165657556 @default.
- W85128250 cites W21920948 @default.
- W85128250 cites W2274944728 @default.
- W85128250 cites W2296319761 @default.
- W85128250 cites W2318075236 @default.
- W85128250 cites W2481460757 @default.
- W85128250 cites W2593283098 @default.
- W85128250 cites W2594853236 @default.
- W85128250 cites W2798442789 @default.
- W85128250 cites W2962725330 @default.
- W85128250 cites W2963622396 @default.
- W85128250 cites W2963853009 @default.
- W85128250 cites W2963999780 @default.
- W85128250 cites W3126588943 @default.
- W85128250 cites W74461478 @default.
- W85128250 cites W99708544 @default.
- W85128250 hasPublicationYear "2011" @default.
- W85128250 type Work @default.
- W85128250 sameAs 85128250 @default.
- W85128250 citedByCount "5" @default.
- W85128250 countsByYear W851282502012 @default.
- W85128250 countsByYear W851282502015 @default.
- W85128250 countsByYear W851282502018 @default.