Matches in SemOpenAlex for { <https://semopenalex.org/work/W851941643> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W851941643 abstract "Confidence-based Feature Acquisition (CFA) is a novel, supervised learning method for acquiring missing feature values when there is missing data at both training (learning) and test (deployment) time. To train a machine learning classifier, data is encoded with a series of input features describing each item. In some applications, the training data may have missing values for some of the features, which can be acquired at a given cost. A relevant JPL example is that of the Mars rover exploration in which the features are obtained from a variety of different instruments, with different power consumption and integration time costs. The challenge is to decide which features will lead to increased classification performance and are therefore worth acquiring (paying the cost). To solve this problem, CFA, which is made up of two algorithms (CFA-train and CFA-predict), has been designed to greedily minimize total acquisition cost (during training and testing) while aiming for a specific accuracy level (specified as a confidence threshold). With this method, it is assumed that there is a nonempty subset of features that are free; that is, every instance in the data set includes these features initially for zero cost. It is also assumed that the feature acquisition (FA) cost associated with each feature is known in advance, and that the FA cost for a given feature is the same for all instances. Finally, CFA requires that the base-level classifiers produce not only a classification, but also a confidence (or posterior probability)." @default.
- W851941643 created "2016-06-24" @default.
- W851941643 creator A5026172631 @default.
- W851941643 creator A5050915835 @default.
- W851941643 creator A5069430593 @default.
- W851941643 date "2010-03-01" @default.
- W851941643 modified "2023-09-26" @default.
- W851941643 title "Confidence-Based Feature Acquisition" @default.
- W851941643 hasPublicationYear "2010" @default.
- W851941643 type Work @default.
- W851941643 sameAs 851941643 @default.
- W851941643 citedByCount "0" @default.
- W851941643 crossrefType "journal-article" @default.
- W851941643 hasAuthorship W851941643A5026172631 @default.
- W851941643 hasAuthorship W851941643A5050915835 @default.
- W851941643 hasAuthorship W851941643A5069430593 @default.
- W851941643 hasConcept C119857082 @default.
- W851941643 hasConcept C124101348 @default.
- W851941643 hasConcept C138885662 @default.
- W851941643 hasConcept C154945302 @default.
- W851941643 hasConcept C16910744 @default.
- W851941643 hasConcept C199360897 @default.
- W851941643 hasConcept C2776401178 @default.
- W851941643 hasConcept C41008148 @default.
- W851941643 hasConcept C41895202 @default.
- W851941643 hasConcept C51632099 @default.
- W851941643 hasConcept C9357733 @default.
- W851941643 hasConcept C95623464 @default.
- W851941643 hasConceptScore W851941643C119857082 @default.
- W851941643 hasConceptScore W851941643C124101348 @default.
- W851941643 hasConceptScore W851941643C138885662 @default.
- W851941643 hasConceptScore W851941643C154945302 @default.
- W851941643 hasConceptScore W851941643C16910744 @default.
- W851941643 hasConceptScore W851941643C199360897 @default.
- W851941643 hasConceptScore W851941643C2776401178 @default.
- W851941643 hasConceptScore W851941643C41008148 @default.
- W851941643 hasConceptScore W851941643C41895202 @default.
- W851941643 hasConceptScore W851941643C51632099 @default.
- W851941643 hasConceptScore W851941643C9357733 @default.
- W851941643 hasConceptScore W851941643C95623464 @default.
- W851941643 hasLocation W8519416431 @default.
- W851941643 hasOpenAccess W851941643 @default.
- W851941643 hasPrimaryLocation W8519416431 @default.
- W851941643 hasRelatedWork W1519196800 @default.
- W851941643 hasRelatedWork W1795255009 @default.
- W851941643 hasRelatedWork W1967128172 @default.
- W851941643 hasRelatedWork W2058065495 @default.
- W851941643 hasRelatedWork W2111297069 @default.
- W851941643 hasRelatedWork W2137507956 @default.
- W851941643 hasRelatedWork W2395805439 @default.
- W851941643 hasRelatedWork W2519625522 @default.
- W851941643 hasRelatedWork W2521689864 @default.
- W851941643 hasRelatedWork W2758425594 @default.
- W851941643 hasRelatedWork W2765761442 @default.
- W851941643 hasRelatedWork W2769134059 @default.
- W851941643 hasRelatedWork W2888870618 @default.
- W851941643 hasRelatedWork W2953145865 @default.
- W851941643 hasRelatedWork W3035777675 @default.
- W851941643 hasRelatedWork W3127716559 @default.
- W851941643 hasRelatedWork W3135387830 @default.
- W851941643 hasRelatedWork W3213280554 @default.
- W851941643 hasRelatedWork W3213283212 @default.
- W851941643 hasRelatedWork W1531652497 @default.
- W851941643 isParatext "false" @default.
- W851941643 isRetracted "false" @default.
- W851941643 magId "851941643" @default.
- W851941643 workType "article" @default.