Matches in SemOpenAlex for { <https://semopenalex.org/work/W853622103> ?p ?o ?g. }
- W853622103 abstract "Accurate estimation of the responses of understory plants to natural and anthropogenic disturbance is essential for understanding efficacy and non-target effects of management and restoration activities. However, ability to assess changes in abundance of understory plants that result from disturbance may be hampered by inappropriate sampling methodologies. Conventional methods for sampling understory plants may be robust for common, well-distributed species, but may fail to adequately characterize the abundance of less-common species, which are often the taxa of management concern. I tested conventional and novel approaches to sampling understory plants to determine their efficacy (in terms of number of replicates and time required) for quantifying abundance of plants of varying frequency and spatial heterogeneity on three control and three thinned-and-burned treatment units located within the western Montana block of the Fire and Fire Surrogates Project (FFS) — a large-scale investigation of the effects of fuel-hazard reduction treatments on a variety of ecosystem components. In each treatment unit, I used four sampling methods (modified Whittaker plots, Daubenmire transects, point line intercept transects, and strip adaptive cluster sampling) to estimate the cover of 24 understory species that vary in abundance. Compared to Daubenmire and point line intercept transects, modified Whittaker plots estimated cover with the lowest variances and, consequently, for the majority (67%) of species required the smallest sample sizes to accurately measure cover. However, this greater sampling efficiency was offset by increased time required to sample. For species grouped by growth-form and for common species, all three conventional sampling designs (i.e. Daubenmire transects, modified Whittaker plots, and point line intercept transects) were capable of estimating cover with a 50% relative margin of error with reasonable sample sizes (3-36 plots or transects for growth-form groups; 8-14 for common species); however, increasing the precision to 25% relative margin of error required sampling sizes that may be logistically infeasible (11-143 plots or transects for growth-form groups; 28-54 for common species). In addition, all three designs required enormous sample sizes to estimate cover of non-native species as a group (29-60 plots or transects) and of individual less-common species (62-118 plots or transects), even with 50% relative margin of error. Strip adaptive cluster sampling was the only method tested that efficiently sampled less-common species: for Cirsium arvense, an invasive non-native plant, adaptive sampling required five times fewer replicates than needed for modified Whittaker plots and 20 times less than for Daubenmire or point line intercept transects. My findings suggest that conventional designs may not be effective for accurately estimating the abundance of newly establishing, non-native plants as a group or of the majority of forest understory plants, which are characterized by low abundance and spatial…" @default.
- W853622103 created "2016-06-24" @default.
- W853622103 creator A5023215346 @default.
- W853622103 date "2009-01-01" @default.
- W853622103 modified "2023-09-27" @default.
- W853622103 title "ASSESSING THE PERFORMANCE OF SAMPLING DESIGNS FOR MEASURING ABUNDANCE OF UNDERSTORY PLANTS AFTER FOREST RESTORATION" @default.
- W853622103 cites W1487378269 @default.
- W853622103 cites W1494157088 @default.
- W853622103 cites W1517697768 @default.
- W853622103 cites W1549644000 @default.
- W853622103 cites W1965601491 @default.
- W853622103 cites W1975173205 @default.
- W853622103 cites W1975565099 @default.
- W853622103 cites W1997876547 @default.
- W853622103 cites W2004372063 @default.
- W853622103 cites W2007631658 @default.
- W853622103 cites W2012714768 @default.
- W853622103 cites W2021510015 @default.
- W853622103 cites W2034918647 @default.
- W853622103 cites W2058887523 @default.
- W853622103 cites W2065942677 @default.
- W853622103 cites W2074201701 @default.
- W853622103 cites W2075843176 @default.
- W853622103 cites W2077907961 @default.
- W853622103 cites W2091285623 @default.
- W853622103 cites W2099900045 @default.
- W853622103 cites W2100109342 @default.
- W853622103 cites W2101490480 @default.
- W853622103 cites W2109688670 @default.
- W853622103 cites W2110182139 @default.
- W853622103 cites W2113158762 @default.
- W853622103 cites W2114373394 @default.
- W853622103 cites W2115833171 @default.
- W853622103 cites W2121703807 @default.
- W853622103 cites W2122865386 @default.
- W853622103 cites W2125409799 @default.
- W853622103 cites W2126826468 @default.
- W853622103 cites W2127478692 @default.
- W853622103 cites W2137160157 @default.
- W853622103 cites W2137545156 @default.
- W853622103 cites W2143257800 @default.
- W853622103 cites W2153281066 @default.
- W853622103 cites W2154487301 @default.
- W853622103 cites W2167854683 @default.
- W853622103 cites W2169438634 @default.
- W853622103 cites W2178287293 @default.
- W853622103 cites W2180945554 @default.
- W853622103 cites W2235594084 @default.
- W853622103 cites W2264325003 @default.
- W853622103 cites W2317904177 @default.
- W853622103 cites W23224143 @default.
- W853622103 cites W2325729642 @default.
- W853622103 cites W2330805404 @default.
- W853622103 cites W2605760202 @default.
- W853622103 cites W2889784734 @default.
- W853622103 cites W2992200441 @default.
- W853622103 cites W376812765 @default.
- W853622103 hasPublicationYear "2009" @default.
- W853622103 type Work @default.
- W853622103 sameAs 853622103 @default.
- W853622103 citedByCount "0" @default.
- W853622103 crossrefType "journal-article" @default.
- W853622103 hasAuthorship W853622103A5023215346 @default.
- W853622103 hasConcept C101000010 @default.
- W853622103 hasConcept C106131492 @default.
- W853622103 hasConcept C139669111 @default.
- W853622103 hasConcept C140779682 @default.
- W853622103 hasConcept C144024400 @default.
- W853622103 hasConcept C149923435 @default.
- W853622103 hasConcept C18903297 @default.
- W853622103 hasConcept C2908647359 @default.
- W853622103 hasConcept C31972630 @default.
- W853622103 hasConcept C39432304 @default.
- W853622103 hasConcept C41008148 @default.
- W853622103 hasConcept C69661492 @default.
- W853622103 hasConcept C75373757 @default.
- W853622103 hasConcept C77077793 @default.
- W853622103 hasConcept C86803240 @default.
- W853622103 hasConceptScore W853622103C101000010 @default.
- W853622103 hasConceptScore W853622103C106131492 @default.
- W853622103 hasConceptScore W853622103C139669111 @default.
- W853622103 hasConceptScore W853622103C140779682 @default.
- W853622103 hasConceptScore W853622103C144024400 @default.
- W853622103 hasConceptScore W853622103C149923435 @default.
- W853622103 hasConceptScore W853622103C18903297 @default.
- W853622103 hasConceptScore W853622103C2908647359 @default.
- W853622103 hasConceptScore W853622103C31972630 @default.
- W853622103 hasConceptScore W853622103C39432304 @default.
- W853622103 hasConceptScore W853622103C41008148 @default.
- W853622103 hasConceptScore W853622103C69661492 @default.
- W853622103 hasConceptScore W853622103C75373757 @default.
- W853622103 hasConceptScore W853622103C77077793 @default.
- W853622103 hasConceptScore W853622103C86803240 @default.
- W853622103 hasLocation W8536221031 @default.
- W853622103 hasOpenAccess W853622103 @default.
- W853622103 hasPrimaryLocation W8536221031 @default.
- W853622103 hasRelatedWork W1466751719 @default.
- W853622103 hasRelatedWork W1508696937 @default.
- W853622103 hasRelatedWork W1972814456 @default.
- W853622103 hasRelatedWork W2030805659 @default.