Matches in SemOpenAlex for { <https://semopenalex.org/work/W853679117> ?p ?o ?g. }
- W853679117 startingPage "335" @default.
- W853679117 abstract "We consider constrained assortment problems assuming that customers select according to the multinomial logit model (MNL). The objective is to find an assortment that maximizes the expected revenue per customer and satisfies a set of totally unimodular constraints. We show that this fractional binary problem can be solved as an equivalent linear program. We use this result to solve five classes of practical assortment optimization and pricing models under MNL, including (1) assortment models with various bounds on the cardinality of the assortment, (2) assortment models where we need to decide the display location of the selected products, (3) pricing models with a finite menu of possible prices, (4) quality consistent pricing models where the prices of the products have to follow a specified quality ordering, (5) assortment models with precedence constraints. We show that all of these classes of problems can be solved as linear programs. In some instances, constraints can be combined as long as total unimodularity is preserved. In addition, we show how the results extend to a larger class of attraction choice models that avoid some of the shortcomings of MNL. The problem of selecting assortments to maximize expected profits or expected welfare arises in a variety of industries ranging from transportation and retailing to travel and leisure. There is a growing concern in these industries to find the right set of products given that offering additional products cannibalizes demand for existing products, while the demand lost from excluding products can be partially recaptured among the remaining products. In revenue management, for example, airlines have developed fare admission control policies assuming that demand for different fares are independent. This assumption was tenable when fares were sufficiently differentiated in terms of price and restrictions, but clearly does not hold in the current environment where fares are far more similar and demand substitution and cannibalization are prevalent. For airlines, it is essential to update their pricing and admission control models to include the possibility of demand substitution among fare classes. This is also an important problem in retailing where substitution between products may occur based on prices, product attributes and display locations. Assortment problems often have associated constraints that make them more challenging. In this paper, we consider constrained assortment optimization problems assuming customers choose according to the multinomial logit model (MNL) or according to other more general attraction choice models. The objective is to maximize the expected revenue obtained from each customer and the constraints on the offered assortment can be captured by a totally unimodular constraint matrix. We formulate this constrained assortment problem as a fractional program with binary decision variables to model the inclusion of products in the assortment. Our main result shows that we can transform this fractional program into a linear program where the integrality constraints can be relaxed because of the totally unimodular nature of the constraints. This result allows us to formulate and solve a variety of practical assortment and pricing problems, the majority of which were not known to be tractable in the literature. Main Contributions. Let N be the product consideration set from which we want to select an assortment S ⊂ N to offer to customers. An assortment can be identified by its incident vector x = {xj : j ∈ N} ∈ {0, 1}|N |, where xj = 1 if j ∈ S and xj = 0 if j / ∈ S. The set of feasible assortments is given by F = {x ∈ {0, 1}|N | : ∑ j∈N aij xj ≤ bi ∀ i ∈ M} for a totally unimodular matrix [aij ]i∈M,j∈N . Given feasible product offer decisions x ∈ F , each customer chooses among the offered products according to MNL. The objective is to choose x ∈ F , a feasible set of products to offer, to maximize the expected revenue obtained from each customer. Although this assortment problem is a fractional program with binary decision variables, our main result shows that it can directly be solved as a linear program. Building on our main result, we show how to solve five classes of practical assortment and pricing problems. First, we work with assortment problems under MNL where there are cardinality constraints on the assortment. Rusmevichientong, Shen and Shmoys (2010) consider assortment problems with a limit on the total number of offered products. Their approach generates candidate assortments and checks the performance of the candidates, whereas we give a direct linear programming formulation. Our approach also extends to more general cardinality constraints. In" @default.
- W853679117 created "2016-06-24" @default.
- W853679117 creator A5046360095 @default.
- W853679117 creator A5048544465 @default.
- W853679117 creator A5055363759 @default.
- W853679117 date "2013-01-01" @default.
- W853679117 modified "2023-09-24" @default.
- W853679117 title "Assortment Planning under the Multinomial Logit Model with Totally Unimodular Constraint Structures" @default.
- W853679117 cites W1501613489 @default.
- W853679117 cites W1522960006 @default.
- W853679117 cites W1550812296 @default.
- W853679117 cites W1968143987 @default.
- W853679117 cites W1974691233 @default.
- W853679117 cites W1978976115 @default.
- W853679117 cites W1979258712 @default.
- W853679117 cites W1980695207 @default.
- W853679117 cites W1985447760 @default.
- W853679117 cites W1998576834 @default.
- W853679117 cites W1998860119 @default.
- W853679117 cites W2002603218 @default.
- W853679117 cites W2042141923 @default.
- W853679117 cites W2067581912 @default.
- W853679117 cites W2072868219 @default.
- W853679117 cites W2094536313 @default.
- W853679117 cites W2102545534 @default.
- W853679117 cites W2105562458 @default.
- W853679117 cites W2117923605 @default.
- W853679117 cites W2120586050 @default.
- W853679117 cites W2120840732 @default.
- W853679117 cites W2129589037 @default.
- W853679117 cites W2144425834 @default.
- W853679117 cites W2147427359 @default.
- W853679117 cites W2152081677 @default.
- W853679117 cites W2164045487 @default.
- W853679117 cites W2174936192 @default.
- W853679117 cites W2266271609 @default.
- W853679117 cites W2611293703 @default.
- W853679117 cites W2733337374 @default.
- W853679117 cites W2742122524 @default.
- W853679117 cites W3015812362 @default.
- W853679117 cites W3124368401 @default.
- W853679117 cites W3215382836 @default.
- W853679117 cites W2186610816 @default.
- W853679117 hasPublicationYear "2013" @default.
- W853679117 type Work @default.
- W853679117 sameAs 853679117 @default.
- W853679117 citedByCount "34" @default.
- W853679117 countsByYear W8536791172014 @default.
- W853679117 countsByYear W8536791172015 @default.
- W853679117 countsByYear W8536791172016 @default.
- W853679117 countsByYear W8536791172017 @default.
- W853679117 countsByYear W8536791172018 @default.
- W853679117 countsByYear W8536791172019 @default.
- W853679117 countsByYear W8536791172020 @default.
- W853679117 countsByYear W8536791172021 @default.
- W853679117 countsByYear W8536791172022 @default.
- W853679117 crossrefType "journal-article" @default.
- W853679117 hasAuthorship W853679117A5046360095 @default.
- W853679117 hasAuthorship W853679117A5048544465 @default.
- W853679117 hasAuthorship W853679117A5055363759 @default.
- W853679117 hasConcept C111472728 @default.
- W853679117 hasConcept C117568660 @default.
- W853679117 hasConcept C118615104 @default.
- W853679117 hasConcept C119857082 @default.
- W853679117 hasConcept C121955636 @default.
- W853679117 hasConcept C124101348 @default.
- W853679117 hasConcept C126255220 @default.
- W853679117 hasConcept C138885662 @default.
- W853679117 hasConcept C149782125 @default.
- W853679117 hasConcept C154945302 @default.
- W853679117 hasConcept C162324750 @default.
- W853679117 hasConcept C175444787 @default.
- W853679117 hasConcept C177264268 @default.
- W853679117 hasConcept C195487862 @default.
- W853679117 hasConcept C199360897 @default.
- W853679117 hasConcept C201958917 @default.
- W853679117 hasConcept C2524010 @default.
- W853679117 hasConcept C2776036281 @default.
- W853679117 hasConcept C2777212361 @default.
- W853679117 hasConcept C2779391423 @default.
- W853679117 hasConcept C2779530757 @default.
- W853679117 hasConcept C2781386248 @default.
- W853679117 hasConcept C33923547 @default.
- W853679117 hasConcept C41008148 @default.
- W853679117 hasConcept C42475967 @default.
- W853679117 hasConcept C87117476 @default.
- W853679117 hasConceptScore W853679117C111472728 @default.
- W853679117 hasConceptScore W853679117C117568660 @default.
- W853679117 hasConceptScore W853679117C118615104 @default.
- W853679117 hasConceptScore W853679117C119857082 @default.
- W853679117 hasConceptScore W853679117C121955636 @default.
- W853679117 hasConceptScore W853679117C124101348 @default.
- W853679117 hasConceptScore W853679117C126255220 @default.
- W853679117 hasConceptScore W853679117C138885662 @default.
- W853679117 hasConceptScore W853679117C149782125 @default.
- W853679117 hasConceptScore W853679117C154945302 @default.
- W853679117 hasConceptScore W853679117C162324750 @default.
- W853679117 hasConceptScore W853679117C175444787 @default.
- W853679117 hasConceptScore W853679117C177264268 @default.