Matches in SemOpenAlex for { <https://semopenalex.org/work/W85462987> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W85462987 abstract "Quantum information processing is the coherent manipulation of a quantum state for the purpose of performing an information processing task. It is known that certain tasks can in principle be performed much more efficiently using quantum information processing rather than ordinary classical processing. Examples include factoring, secure key distribution, and the simulation of quantum systems. However, significant theoretical and technological obstacles stand in the road to achieving these promised benefits. It is exceedingly difficult to construct devices that are able to achieve an extensive level of control of a quantum state while keeping that state well isolated from the effects of noise. Although there is considerable experimental effort underway to build devices that are less noisy and more controllable, there is also a significant theoretical program aimed at finding schemes that make such physical limitations have less effect on the overall reliability of a device. The crowning achievement is the theory of fault-tolerant quantum error-correction, which shows that a noisy quantum device can be efficiently made to behave as though it were noise free, so long as the amount of noise present is below the “noise threshold”. A central result of this thesis is the calculation of the noise threshold for optical cluster-state quantum computing. Optical cluster-state quantum computing is one of the most promising proposals for the physical implementation of a quantum computer (i.e., a generic quantum information processing device). Previous studies of the value of the threshold, that considered other physical implementations, do not apply to optical quantum computing due to the unusual features of the optical proposal such as nondeterministic gates and photon loss. We present the first detailed analysis of the value of the noise threshold for this proposal. Our analysis involves a number of innovations, including a method for error-correction known as telecorrection, whereby repeated error-syndrome measurements are guaranteed to agree due to the use of teleportation during the correction process. This thesis also considers how to overcome limits to the amount of physical control able to be applied to a quantum device. We ask, if a quantum device can only control limited parts of its quantum state, can that device still be used to achieve a useful information processing task? We consider simple networks of interacting quantum spins where only a few of the spins are controllable, and consider the problem of using this system for high-fidelity quantum communication (i.e., using the system as a simple “quantum wire”). Without control, such systems generally yield a very poor communication fidelity. We show that a very simple scheme that involves controlling a small number of the spins can be used to greatly increase the fidelity across the entire network. The scheme is designed using techniques of state encoding. The thesis also considers the problem of engineering the interactions in a quantum device so that the ground state is a quantum error-correcting code. Such a problem is an important part of the proposal for naturally fault-tolerant systems, which have the ability to resist noise whilst using little or no external control. Our results prove that a certain important class of quantum error-correcting codes, the so called nondegenerate codes, cannot be the eigenstate of any physically-plausible quantum system. This result places significant restrictions on the design of naturally fault-tolerant devices, and sheds light on why current proposals for natural fault tolerance use codes that are degenerate." @default.
- W85462987 created "2016-06-24" @default.
- W85462987 creator A5025778155 @default.
- W85462987 date "2006-01-01" @default.
- W85462987 modified "2023-09-27" @default.
- W85462987 title "Reliable quantum information processsing" @default.
- W85462987 hasPublicationYear "2006" @default.
- W85462987 type Work @default.
- W85462987 sameAs 85462987 @default.
- W85462987 citedByCount "0" @default.
- W85462987 crossrefType "journal-article" @default.
- W85462987 hasAuthorship W85462987A5025778155 @default.
- W85462987 hasConcept C111996192 @default.
- W85462987 hasConcept C113775141 @default.
- W85462987 hasConcept C115961682 @default.
- W85462987 hasConcept C121332964 @default.
- W85462987 hasConcept C137019171 @default.
- W85462987 hasConcept C154945302 @default.
- W85462987 hasConcept C169699857 @default.
- W85462987 hasConcept C186468114 @default.
- W85462987 hasConcept C190463098 @default.
- W85462987 hasConcept C190474826 @default.
- W85462987 hasConcept C41008148 @default.
- W85462987 hasConcept C51003876 @default.
- W85462987 hasConcept C58053490 @default.
- W85462987 hasConcept C62520636 @default.
- W85462987 hasConcept C80444323 @default.
- W85462987 hasConcept C84114770 @default.
- W85462987 hasConcept C99498987 @default.
- W85462987 hasConceptScore W85462987C111996192 @default.
- W85462987 hasConceptScore W85462987C113775141 @default.
- W85462987 hasConceptScore W85462987C115961682 @default.
- W85462987 hasConceptScore W85462987C121332964 @default.
- W85462987 hasConceptScore W85462987C137019171 @default.
- W85462987 hasConceptScore W85462987C154945302 @default.
- W85462987 hasConceptScore W85462987C169699857 @default.
- W85462987 hasConceptScore W85462987C186468114 @default.
- W85462987 hasConceptScore W85462987C190463098 @default.
- W85462987 hasConceptScore W85462987C190474826 @default.
- W85462987 hasConceptScore W85462987C41008148 @default.
- W85462987 hasConceptScore W85462987C51003876 @default.
- W85462987 hasConceptScore W85462987C58053490 @default.
- W85462987 hasConceptScore W85462987C62520636 @default.
- W85462987 hasConceptScore W85462987C80444323 @default.
- W85462987 hasConceptScore W85462987C84114770 @default.
- W85462987 hasConceptScore W85462987C99498987 @default.
- W85462987 hasLocation W854629871 @default.
- W85462987 hasOpenAccess W85462987 @default.
- W85462987 hasPrimaryLocation W854629871 @default.
- W85462987 hasRelatedWork W1503882162 @default.
- W85462987 hasRelatedWork W1505446029 @default.
- W85462987 hasRelatedWork W1575459797 @default.
- W85462987 hasRelatedWork W1988899602 @default.
- W85462987 hasRelatedWork W2181423939 @default.
- W85462987 hasRelatedWork W2275014825 @default.
- W85462987 hasRelatedWork W2482126025 @default.
- W85462987 hasRelatedWork W2523287421 @default.
- W85462987 hasRelatedWork W2765085874 @default.
- W85462987 hasRelatedWork W2775106578 @default.
- W85462987 hasRelatedWork W2793452508 @default.
- W85462987 hasRelatedWork W2951211905 @default.
- W85462987 hasRelatedWork W2953111159 @default.
- W85462987 hasRelatedWork W2995509636 @default.
- W85462987 hasRelatedWork W3005996619 @default.
- W85462987 hasRelatedWork W3037649077 @default.
- W85462987 hasRelatedWork W3106522152 @default.
- W85462987 hasRelatedWork W3126124413 @default.
- W85462987 hasRelatedWork W3184830186 @default.
- W85462987 hasRelatedWork W3206088030 @default.
- W85462987 isParatext "false" @default.
- W85462987 isRetracted "false" @default.
- W85462987 magId "85462987" @default.
- W85462987 workType "article" @default.