Matches in SemOpenAlex for { <https://semopenalex.org/work/W854920577> ?p ?o ?g. }
- W854920577 abstract "An important task of public health officials is to keep track of health issues, such as spreading epidemics. In this paper, we are addressing the issue of spreading public concern about epidemics. Public concern about a communicable disease can be seen as a problem of its own. Keeping track of trends in concern about public health and identifying peaks of public concern are therefore crucial tasks. However, monitoring public health concerns is not only expensive with traditional surveillance systems, but also suffers from limited coverage and significant delays. To address these problems, we are using Twitter messages, which are available free of cost, are generated world-wide, and are posted in real time. We are measuring public concern using a two-step sentiment classification approach. In the first step, we distinguish Personal tweets from News (i.e., Non-Personal) tweets. In the second step, we further separate Personal Negative from Personal Non-Negative tweets. Both these steps consist themselves of two sub-steps. In the first sub-step (of both steps), our programs automatically generate training data using an emotion-oriented, clue-based method. In the second sub-step, we are training and testing three different Machine Learning (ML) models with the training data from the first sub-step; this allows us to determine the best ML model for different datasets. Furthermore, we are testing the already trained ML models with a human annotated, disjoint dataset. Based on the number of tweets classified as Personal Negative, we compute a Measure of Concern (MOC) and a timeline of the MOC. We attempt to correlate peaks of the MOC timeline to peaks of the News (Non-Personal) timeline. Our best accuracy results are achieved using the two-step method with a Naïve Bayes classifier for the Epidemic domain (six datasets) and the Mental Health domain (three datasets)." @default.
- W854920577 created "2016-06-24" @default.
- W854920577 creator A5001916237 @default.
- W854920577 creator A5036705478 @default.
- W854920577 creator A5058091732 @default.
- W854920577 creator A5070654032 @default.
- W854920577 date "2015-05-12" @default.
- W854920577 modified "2023-10-16" @default.
- W854920577 title "Twitter sentiment classification for measuring public health concerns" @default.
- W854920577 cites W1493379323 @default.
- W854920577 cites W152565956 @default.
- W854920577 cites W1575830776 @default.
- W854920577 cites W1839863673 @default.
- W854920577 cites W196350606 @default.
- W854920577 cites W1975879668 @default.
- W854920577 cites W1976323204 @default.
- W854920577 cites W1977614311 @default.
- W854920577 cites W1988912041 @default.
- W854920577 cites W1999691259 @default.
- W854920577 cites W2022154907 @default.
- W854920577 cites W2022204871 @default.
- W854920577 cites W2022783018 @default.
- W854920577 cites W2025330985 @default.
- W854920577 cites W2035438490 @default.
- W854920577 cites W2037733767 @default.
- W854920577 cites W2041400887 @default.
- W854920577 cites W2049271634 @default.
- W854920577 cites W2068372477 @default.
- W854920577 cites W2072322795 @default.
- W854920577 cites W2088622183 @default.
- W854920577 cites W2097579905 @default.
- W854920577 cites W2112344871 @default.
- W854920577 cites W2112744748 @default.
- W854920577 cites W2117239687 @default.
- W854920577 cites W2122369144 @default.
- W854920577 cites W2133990480 @default.
- W854920577 cites W2141701578 @default.
- W854920577 cites W2145139979 @default.
- W854920577 cites W2147194983 @default.
- W854920577 cites W2153635508 @default.
- W854920577 cites W2156413587 @default.
- W854920577 cites W2164777277 @default.
- W854920577 cites W2166706824 @default.
- W854920577 cites W4205184193 @default.
- W854920577 cites W4232932184 @default.
- W854920577 cites W4250689175 @default.
- W854920577 cites W66373487 @default.
- W854920577 doi "https://doi.org/10.1007/s13278-015-0253-5" @default.
- W854920577 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7096866" @default.
- W854920577 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32226558" @default.
- W854920577 hasPublicationYear "2015" @default.
- W854920577 type Work @default.
- W854920577 sameAs 854920577 @default.
- W854920577 citedByCount "98" @default.
- W854920577 countsByYear W8549205772016 @default.
- W854920577 countsByYear W8549205772017 @default.
- W854920577 countsByYear W8549205772018 @default.
- W854920577 countsByYear W8549205772019 @default.
- W854920577 countsByYear W8549205772020 @default.
- W854920577 countsByYear W8549205772021 @default.
- W854920577 countsByYear W8549205772022 @default.
- W854920577 countsByYear W8549205772023 @default.
- W854920577 crossrefType "journal-article" @default.
- W854920577 hasAuthorship W854920577A5001916237 @default.
- W854920577 hasAuthorship W854920577A5036705478 @default.
- W854920577 hasAuthorship W854920577A5058091732 @default.
- W854920577 hasAuthorship W854920577A5070654032 @default.
- W854920577 hasBestOaLocation W8549205772 @default.
- W854920577 hasConcept C111919701 @default.
- W854920577 hasConcept C114614502 @default.
- W854920577 hasConcept C119857082 @default.
- W854920577 hasConcept C127705205 @default.
- W854920577 hasConcept C138816342 @default.
- W854920577 hasConcept C154945302 @default.
- W854920577 hasConcept C159110408 @default.
- W854920577 hasConcept C162324750 @default.
- W854920577 hasConcept C166957645 @default.
- W854920577 hasConcept C169093310 @default.
- W854920577 hasConcept C187736073 @default.
- W854920577 hasConcept C23123220 @default.
- W854920577 hasConcept C2522767166 @default.
- W854920577 hasConcept C2780451532 @default.
- W854920577 hasConcept C33923547 @default.
- W854920577 hasConcept C38652104 @default.
- W854920577 hasConcept C41008148 @default.
- W854920577 hasConcept C4438859 @default.
- W854920577 hasConcept C45340560 @default.
- W854920577 hasConcept C71924100 @default.
- W854920577 hasConcept C95457728 @default.
- W854920577 hasConceptScore W854920577C111919701 @default.
- W854920577 hasConceptScore W854920577C114614502 @default.
- W854920577 hasConceptScore W854920577C119857082 @default.
- W854920577 hasConceptScore W854920577C127705205 @default.
- W854920577 hasConceptScore W854920577C138816342 @default.
- W854920577 hasConceptScore W854920577C154945302 @default.
- W854920577 hasConceptScore W854920577C159110408 @default.
- W854920577 hasConceptScore W854920577C162324750 @default.
- W854920577 hasConceptScore W854920577C166957645 @default.
- W854920577 hasConceptScore W854920577C169093310 @default.
- W854920577 hasConceptScore W854920577C187736073 @default.