Matches in SemOpenAlex for { <https://semopenalex.org/work/W858194014> ?p ?o ?g. }
- W858194014 endingPage "13" @default.
- W858194014 startingPage "1" @default.
- W858194014 abstract "최근 많은 연구자와 실무자들이 모집단에 내재해 있는 여러 다른 그룹(class, segment)간의 이질성을 밝혀내고 객체들을 그룹별로 세분화하는 방법 중 하나로 잠재그룹 모델(Latent class model)을 고려하고 있다. 이 논문에서는 2000년도에 국립 암 센터에 접수된 한국 내 연령별 전립선암 사망자수 자료를 기반으로, 잠재그룹 포아송 모형을 이용하여 전립선암 환자의 연령에 따른 그룹화를 시도한다. 최우추정법 등 고전적 추론방법의 한계를 극복하기 위하여 Markov Chain Monte Carlo (MCMC) 방법을 도구로 한 베이지안 추정 방법을 제안한다. 제안된 베이지안 방법의 장점은 용이한 모수추정과 추정오차의 제공, 그리고 각 객체의 소속그룹의 판정과 이에 따르는 오차, 즉, 객체의 각 군집에 속할 확률, 도 구할 수 있다는 것이다. 또한 주어진 자료들에 대해 가장 적합한 그룹의 수를 결정하는 방법을 제시하여 그룹의 수나 세분화의 근거를 사전에 제공하지 않아도 자료가 주는 정보로부터 이들을 자동으로 결정하는 방법을 제시한다. Latent Class model has been considered recently by many researchers and practitioners as a tool for identifying heterogeneous segments or groups in a population, and grouping objects into the segments. In this paper we consider data on prostate cancer patients from Korean National Cancer Institute and propose a method for grouping prostate cancer patients by using latent class Poisson model. A Bayesian approach equipped with a Markov chain Monte Carlo method is used to overcome the limit of classical likelihood approaches. Advantages of the proposed Bayesian method are easy estimation of parameters with their standard errors, segmentation of objects into groups, and provision of uncertainty measures for the segmentation. In addition, we provide a method to determine an appropriate number of segments for the given data so that the method automatically chooses the number of segments and partitions objects into heterogeneous segments." @default.
- W858194014 created "2016-06-24" @default.
- W858194014 date "2005-03-01" @default.
- W858194014 modified "2023-09-25" @default.
- W858194014 title "Bayesian Clustering of Prostate Cancer Patients by Using a Latent Class Poisson Model" @default.
- W858194014 cites W1556472699 @default.
- W858194014 cites W1964613109 @default.
- W858194014 cites W1966007397 @default.
- W858194014 cites W1966151505 @default.
- W858194014 cites W1976809453 @default.
- W858194014 cites W1982348007 @default.
- W858194014 cites W1983490583 @default.
- W858194014 cites W1985261262 @default.
- W858194014 cites W1986827948 @default.
- W858194014 cites W1987924238 @default.
- W858194014 cites W1995645935 @default.
- W858194014 cites W1995828992 @default.
- W858194014 cites W1999918921 @default.
- W858194014 cites W2002810210 @default.
- W858194014 cites W2008419909 @default.
- W858194014 cites W2015800048 @default.
- W858194014 cites W2015946343 @default.
- W858194014 cites W2019368684 @default.
- W858194014 cites W2020539766 @default.
- W858194014 cites W2021800416 @default.
- W858194014 cites W2023689787 @default.
- W858194014 cites W2027204294 @default.
- W858194014 cites W2031990614 @default.
- W858194014 cites W2032067131 @default.
- W858194014 cites W2038487359 @default.
- W858194014 cites W2042934607 @default.
- W858194014 cites W2043879936 @default.
- W858194014 cites W2049361783 @default.
- W858194014 cites W2052236587 @default.
- W858194014 cites W2055926193 @default.
- W858194014 cites W2063809886 @default.
- W858194014 cites W2065991149 @default.
- W858194014 cites W2066967522 @default.
- W858194014 cites W2069551643 @default.
- W858194014 cites W2083272160 @default.
- W858194014 cites W2084222609 @default.
- W858194014 cites W2088844710 @default.
- W858194014 cites W2093017030 @default.
- W858194014 cites W2094515728 @default.
- W858194014 cites W2099114361 @default.
- W858194014 cites W2115232378 @default.
- W858194014 cites W2115881827 @default.
- W858194014 cites W2133111499 @default.
- W858194014 cites W2149860264 @default.
- W858194014 cites W2154530970 @default.
- W858194014 cites W2155288473 @default.
- W858194014 cites W2159307722 @default.
- W858194014 cites W2172240858 @default.
- W858194014 cites W2314297038 @default.
- W858194014 cites W2331747324 @default.
- W858194014 cites W278413204 @default.
- W858194014 doi "https://doi.org/10.5351/kjas.2005.18.1.001" @default.
- W858194014 hasPublicationYear "2005" @default.
- W858194014 type Work @default.
- W858194014 sameAs 858194014 @default.
- W858194014 citedByCount "0" @default.
- W858194014 crossrefType "journal-article" @default.
- W858194014 hasBestOaLocation W8581940141 @default.
- W858194014 hasConcept C107673813 @default.
- W858194014 hasConcept C111350023 @default.
- W858194014 hasConcept C119857082 @default.
- W858194014 hasConcept C124101348 @default.
- W858194014 hasConcept C153180895 @default.
- W858194014 hasConcept C154945302 @default.
- W858194014 hasConcept C2780591659 @default.
- W858194014 hasConcept C41008148 @default.
- W858194014 hasConcept C61224824 @default.
- W858194014 hasConcept C70727504 @default.
- W858194014 hasConcept C73555534 @default.
- W858194014 hasConcept C89600930 @default.
- W858194014 hasConceptScore W858194014C107673813 @default.
- W858194014 hasConceptScore W858194014C111350023 @default.
- W858194014 hasConceptScore W858194014C119857082 @default.
- W858194014 hasConceptScore W858194014C124101348 @default.
- W858194014 hasConceptScore W858194014C153180895 @default.
- W858194014 hasConceptScore W858194014C154945302 @default.
- W858194014 hasConceptScore W858194014C2780591659 @default.
- W858194014 hasConceptScore W858194014C41008148 @default.
- W858194014 hasConceptScore W858194014C61224824 @default.
- W858194014 hasConceptScore W858194014C70727504 @default.
- W858194014 hasConceptScore W858194014C73555534 @default.
- W858194014 hasConceptScore W858194014C89600930 @default.
- W858194014 hasIssue "1" @default.
- W858194014 hasLocation W8581940141 @default.
- W858194014 hasOpenAccess W858194014 @default.
- W858194014 hasPrimaryLocation W8581940141 @default.
- W858194014 hasRelatedWork W2096878708 @default.
- W858194014 hasRelatedWork W2290037765 @default.
- W858194014 hasRelatedWork W2964008789 @default.
- W858194014 hasRelatedWork W3002782179 @default.
- W858194014 hasRelatedWork W3033871545 @default.
- W858194014 hasRelatedWork W3098350781 @default.
- W858194014 hasRelatedWork W3123160426 @default.