Matches in SemOpenAlex for { <https://semopenalex.org/work/W85898295> ?p ?o ?g. }
- W85898295 abstract "The quantum algorithm of AJL [3] (following the work of Freedman et al. [10]) to approximate the Jones polynomial, is of a new type: rather than using the quantum Fourier transform, it encodes the local combinatorial structure of the problem by the relations of an algebra, called the Temperley-Lieb algebra, whose matrix representation is then applied, using a quantum computer. By the results of [11], the problems this algorithm solves are the first non trivial BQP-complete problems. A natural question is whether it is possible to generalize this algorithm to other points of the famous Tutte polynomial, of which the Jones polynomial is a special case. However, the only points for which unitary representations of the Temperley-Lieb algebra exist are exactly those points to which the AJL algorithms apply. It seems counter-intuitive to be able to apply non-unitary representations in a quantum algorithm, and even more so to be able to show that these non-unitary algorithms are BQP-complete. In the first part of this work we present two approaches that aim to generalize the results of AJL to other points of the Tutte polynomial. The first approach uses interpolation techniques in order to approximate the polynomial on an interval. The second approach uses a transformation of graphs, namely graph tensor, in order to approximate a discrete set of points of the Tutte polynomial that were not accessible using the algorithm of AJL. Both approaches achieve an approximation scale which is exponential in the number of edges of the graph. This scale is of the same order as the trivial bound and we aimed to improve it. The main result of the present work is a polynomial quantum additive approximation of the Tutte polynomial, at any point, for any planar graph. This is done by first generalizing the Temperley-Lieb algebra so that any planar graph can be dealt with and then observing that non-unitary operators can in fact be applied. We note that by the result of Aharonov, Arad, Landau and the author [2], the approximation of many points of the Tutte polynomial is BQP-hard. However, this result is not described in this work. An implication is an additive approximation of the partition function of the Potts model with any set of couplings at any temperature. However, the question of the complexity of this approximation is not fully settled; as the techniques used in [2] to prove BQP-hardness are not known to apply to the parameters of the Potts model. Thus, the exact quality of our algorithm regarding the Potts model is yet to be determined. In addition, our result implies approximations to many other combinatorial graph properties captured by the (multivariate or not) Tutte polynomial." @default.
- W85898295 created "2016-06-24" @default.
- W85898295 creator A5005794608 @default.
- W85898295 creator A5044999818 @default.
- W85898295 date "2007-01-01" @default.
- W85898295 modified "2023-09-27" @default.
- W85898295 title "Quantum Algorithms Beyond the Jones Polynomial" @default.
- W85898295 cites W122866083 @default.
- W85898295 cites W1490370380 @default.
- W85898295 cites W1510717485 @default.
- W85898295 cites W1531965102 @default.
- W85898295 cites W1590167836 @default.
- W85898295 cites W1594342725 @default.
- W85898295 cites W1620946649 @default.
- W85898295 cites W1631356911 @default.
- W85898295 cites W1632584182 @default.
- W85898295 cites W1918109105 @default.
- W85898295 cites W1965036827 @default.
- W85898295 cites W1965511886 @default.
- W85898295 cites W1971911032 @default.
- W85898295 cites W1981003652 @default.
- W85898295 cites W1993557942 @default.
- W85898295 cites W2003582562 @default.
- W85898295 cites W2009571139 @default.
- W85898295 cites W2013557783 @default.
- W85898295 cites W2039763834 @default.
- W85898295 cites W2057004846 @default.
- W85898295 cites W2093786499 @default.
- W85898295 cites W2137459590 @default.
- W85898295 cites W2164171842 @default.
- W85898295 cites W2167050139 @default.
- W85898295 cites W2327745271 @default.
- W85898295 cites W3015358064 @default.
- W85898295 hasPublicationYear "2007" @default.
- W85898295 type Work @default.
- W85898295 sameAs 85898295 @default.
- W85898295 citedByCount "0" @default.
- W85898295 crossrefType "journal-article" @default.
- W85898295 hasAuthorship W85898295A5005794608 @default.
- W85898295 hasAuthorship W85898295A5044999818 @default.
- W85898295 hasConcept C11413529 @default.
- W85898295 hasConcept C114614502 @default.
- W85898295 hasConcept C118615104 @default.
- W85898295 hasConcept C121332964 @default.
- W85898295 hasConcept C132525143 @default.
- W85898295 hasConcept C134306372 @default.
- W85898295 hasConcept C137019171 @default.
- W85898295 hasConcept C14447369 @default.
- W85898295 hasConcept C192122513 @default.
- W85898295 hasConcept C203776342 @default.
- W85898295 hasConcept C22149727 @default.
- W85898295 hasConcept C33923547 @default.
- W85898295 hasConcept C51003876 @default.
- W85898295 hasConcept C58053490 @default.
- W85898295 hasConcept C58849907 @default.
- W85898295 hasConcept C59500034 @default.
- W85898295 hasConcept C62520636 @default.
- W85898295 hasConcept C84114770 @default.
- W85898295 hasConcept C90119067 @default.
- W85898295 hasConceptScore W85898295C11413529 @default.
- W85898295 hasConceptScore W85898295C114614502 @default.
- W85898295 hasConceptScore W85898295C118615104 @default.
- W85898295 hasConceptScore W85898295C121332964 @default.
- W85898295 hasConceptScore W85898295C132525143 @default.
- W85898295 hasConceptScore W85898295C134306372 @default.
- W85898295 hasConceptScore W85898295C137019171 @default.
- W85898295 hasConceptScore W85898295C14447369 @default.
- W85898295 hasConceptScore W85898295C192122513 @default.
- W85898295 hasConceptScore W85898295C203776342 @default.
- W85898295 hasConceptScore W85898295C22149727 @default.
- W85898295 hasConceptScore W85898295C33923547 @default.
- W85898295 hasConceptScore W85898295C51003876 @default.
- W85898295 hasConceptScore W85898295C58053490 @default.
- W85898295 hasConceptScore W85898295C58849907 @default.
- W85898295 hasConceptScore W85898295C59500034 @default.
- W85898295 hasConceptScore W85898295C62520636 @default.
- W85898295 hasConceptScore W85898295C84114770 @default.
- W85898295 hasConceptScore W85898295C90119067 @default.
- W85898295 hasLocation W858982951 @default.
- W85898295 hasOpenAccess W85898295 @default.
- W85898295 hasPrimaryLocation W858982951 @default.
- W85898295 hasRelatedWork W150762646 @default.
- W85898295 hasRelatedWork W1970373597 @default.
- W85898295 hasRelatedWork W2080137701 @default.
- W85898295 hasRelatedWork W2093786499 @default.
- W85898295 hasRelatedWork W2123147723 @default.
- W85898295 hasRelatedWork W2145279243 @default.
- W85898295 hasRelatedWork W2266487189 @default.
- W85898295 hasRelatedWork W2623598361 @default.
- W85898295 hasRelatedWork W2729056505 @default.
- W85898295 hasRelatedWork W2788498798 @default.
- W85898295 hasRelatedWork W2788883777 @default.
- W85898295 hasRelatedWork W2952910752 @default.
- W85898295 hasRelatedWork W2952958375 @default.
- W85898295 hasRelatedWork W2962824725 @default.
- W85898295 hasRelatedWork W2962956712 @default.
- W85898295 hasRelatedWork W3043836862 @default.
- W85898295 hasRelatedWork W3099744185 @default.
- W85898295 hasRelatedWork W3099766096 @default.
- W85898295 hasRelatedWork W2557644439 @default.