Matches in SemOpenAlex for { <https://semopenalex.org/work/W85926468> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W85926468 abstract "The astonishing, exponentially increasing rates of genome sequencing has led to one of the most significant challenges for the biological and computational sciences in the 21st century: assigning the likely functions of the encoded proteins. Enzymes represent a particular challenge, and a critical one, because the universe of enzymes is likely to contain many novel functions that may be useful for synthetic biology, or as drug targets. Current approaches to protein annotation are largely based on bioinformatics. At the simplest level, this annotation involves transferring the annotations of characterized enzymes to related sequences. In practice, however, there is no simple, sequence based criterion for transferring annotations, and bioinformatics alone cannot propose new enzymatic functions. Structure-based computational methods have the potential to address these limitations, by identifying potential substrates of enzymes, as we and others have shown. One successful approach has used in silico 'docking' methods, more commonly applied in structure-based drug design, to identify possible metabolite substrates. A major limitation of this approach is that it only considers substrate binding, and does not directly assess the potential of the enzyme to catalyze a particular reaction using a particular substrate. That is, substrate binding affinity is necessary but not sufficient to assign function. A reaction profile is ultimately what is needed for a more complete quantitative description of function. To address this rather fundamental limitation, they propose to use quantum mechanical methods to explicitly compute transition state barriers that govern the rates of catalysis. Although quantum mechanical, and mixed quantum/classical (QM/MM), methods have been used extensively to investigate enzymatic reactions, the focus has been primarily on elucidating complex reaction mechanisms. Here, the key catalytic steps are known, and they use these methods quantify substrate specificity. That is, we bring the power of quantum mechanics to bear on the problem of annotating enzyme function, which is a novel approach. Although it has been clear to us at the Jacobson group for some time that enzyme specificity may be encoded in transition states, rather than simply substrate recognition, the main limitation has always been computational expense. Using a hierarchy of different methods, they can reduce the list of plausible substrates of an enzyme to a small number in most cases, but even identifying the transition states for a dozen plausible substrates requires significant computational effort, beyond what is practical using standard QM/MM methods. For this project, they have chosen two enzyme superfamilies which they have used as 'model systems' for functional assignment. The enolase superfamily is a large group of {alpha}-{beta} barrel enzymes with highly diverse substrates and chemical transformations. Despite decades of work, over a third of the superfamily remains unassigned, which means that the remaining cases are by definition difficult to assign. They have focused on acid sugar dehydratases, and have considerable expertise on the matter. They are also interested in the isoprenoid synthase superfamily, which is of central interest to the synthetic biology community, because these enzymes are used by nature to create complex rare natural products of medicinal value. the most notable example of this is the artemisinin, an antimalarial compound that is found in trace amounts in the wormwod root. From the standpoint of enzyme function assignment, these enzymes are intriguing because they use a small number of chemically simple substrates to generate, potentially, tens of thousands of different products. Hence, substrate binding specificity is only a small part of the challenge; the key is determining how the enzyme directs the carbocation chemistry to specific products. These more complex modeling approaches clearly require quantum mechanical methods." @default.
- W85926468 created "2016-06-24" @default.
- W85926468 creator A5001224002 @default.
- W85926468 creator A5051041892 @default.
- W85926468 creator A5056841564 @default.
- W85926468 creator A5064007349 @default.
- W85926468 date "2012-01-17" @default.
- W85926468 modified "2023-09-24" @default.
- W85926468 title "Quantum mechanical approaches to in silico enzyme characterization and drug design" @default.
- W85926468 doi "https://doi.org/10.2172/1034511" @default.
- W85926468 hasPublicationYear "2012" @default.
- W85926468 type Work @default.
- W85926468 sameAs 85926468 @default.
- W85926468 citedByCount "0" @default.
- W85926468 crossrefType "report" @default.
- W85926468 hasAuthorship W85926468A5001224002 @default.
- W85926468 hasAuthorship W85926468A5051041892 @default.
- W85926468 hasAuthorship W85926468A5056841564 @default.
- W85926468 hasAuthorship W85926468A5064007349 @default.
- W85926468 hasBestOaLocation W859264682 @default.
- W85926468 hasConcept C104317684 @default.
- W85926468 hasConcept C121332964 @default.
- W85926468 hasConcept C14036430 @default.
- W85926468 hasConcept C154945302 @default.
- W85926468 hasConcept C181199279 @default.
- W85926468 hasConcept C185592680 @default.
- W85926468 hasConcept C2775905019 @default.
- W85926468 hasConcept C2776321320 @default.
- W85926468 hasConcept C41008148 @default.
- W85926468 hasConcept C54355233 @default.
- W85926468 hasConcept C55493867 @default.
- W85926468 hasConcept C60644358 @default.
- W85926468 hasConcept C62520636 @default.
- W85926468 hasConcept C70721500 @default.
- W85926468 hasConcept C74187038 @default.
- W85926468 hasConcept C84114770 @default.
- W85926468 hasConcept C86803240 @default.
- W85926468 hasConceptScore W85926468C104317684 @default.
- W85926468 hasConceptScore W85926468C121332964 @default.
- W85926468 hasConceptScore W85926468C14036430 @default.
- W85926468 hasConceptScore W85926468C154945302 @default.
- W85926468 hasConceptScore W85926468C181199279 @default.
- W85926468 hasConceptScore W85926468C185592680 @default.
- W85926468 hasConceptScore W85926468C2775905019 @default.
- W85926468 hasConceptScore W85926468C2776321320 @default.
- W85926468 hasConceptScore W85926468C41008148 @default.
- W85926468 hasConceptScore W85926468C54355233 @default.
- W85926468 hasConceptScore W85926468C55493867 @default.
- W85926468 hasConceptScore W85926468C60644358 @default.
- W85926468 hasConceptScore W85926468C62520636 @default.
- W85926468 hasConceptScore W85926468C70721500 @default.
- W85926468 hasConceptScore W85926468C74187038 @default.
- W85926468 hasConceptScore W85926468C84114770 @default.
- W85926468 hasConceptScore W85926468C86803240 @default.
- W85926468 hasLocation W859264681 @default.
- W85926468 hasLocation W859264682 @default.
- W85926468 hasLocation W859264683 @default.
- W85926468 hasOpenAccess W85926468 @default.
- W85926468 hasPrimaryLocation W859264681 @default.
- W85926468 hasRelatedWork W1972678028 @default.
- W85926468 hasRelatedWork W2003194288 @default.
- W85926468 hasRelatedWork W2095508714 @default.
- W85926468 hasRelatedWork W2116930553 @default.
- W85926468 hasRelatedWork W2146211839 @default.
- W85926468 hasRelatedWork W2152933096 @default.
- W85926468 hasRelatedWork W2181705536 @default.
- W85926468 hasRelatedWork W2605628782 @default.
- W85926468 hasRelatedWork W2937687666 @default.
- W85926468 hasRelatedWork W4293076875 @default.
- W85926468 isParatext "false" @default.
- W85926468 isRetracted "false" @default.
- W85926468 magId "85926468" @default.
- W85926468 workType "report" @default.