Matches in SemOpenAlex for { <https://semopenalex.org/work/W86244032> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W86244032 abstract "A space-based experiment is currently under development to study diffusion-controlled, gas-phase, low temperature oxidation reactions, cool flames and auto-ignition in an unstirred, static reactor. At Earth's gravity (1g), natural convection due to self-heating during course of slow reaction dominates diffusive transport and produces spatio-temporal variations in thermal and thus species concentration profiles via Arrhenius temperature dependence of reaction rates. Natural convection is important in all terrestrial cool flame and auto-ignition studies, except for select low pressure, highly dilute (small temperature excess) studies in small vessels (i.e., small Rayleigh number). On Earth, natural convection occurs when Rayleigh number (Ra) exceeds a critical value of approximately 600. Typical values of Ra, associated with cool flames and auto-ignitions, range from 104-105 (or larger), a regime where both natural convection and conduction heat transport are important. When natural convection occurs, it alters temperature, hydrodynamic, and species concentration fields, thus generating a multi-dimensional field that is extremely difficult, if not impossible, to be modeled analytically. point has been emphasized recently by Kagan and co-workers who have shown that explosion limits can shift depending on characteristic length scale associated with natural convection. Moreover, natural convection in unstirred reactors is never strong to generate a spatially uniform temperature distribution throughout reacting gas. Thus, an unstirred, nonisothermal reaction on Earth does not reduce to that generated in a mechanically, well-stirred system. Interestingly, however, thermal ignition theories and thermokinetic models neglect natural convection and assume a heat transfer correlation of form: q=h(S/V)(T(bar) - Tw) where q is heat loss per unit volume, h is heat transfer coefficient, S/V is surface to volume ratio, and (T(bar) - Tw ) is spatially averaged temperature excess. Newtonian form has been validated in spatially-uniform, well-stirred reactors, provided effective heat transfer coefficient associated with unsteady process is properly evaluated. Unfortunately, it is not a valid assumption for spatially-nonuniform temperature distributions induced by natural convection in unstirred reactors. This is why analysis of such a system is so difficult. Historically, complexities associated with natural convection were perhaps recognized as early as 1938 when thermal ignition theory was first developed. In 1955 text Diffusion and Heat Exchange in Chemical Kinetics, Frank-Kamenetskii recognized that the purely conductive theory can be applied at sufficiently low pressure and small dimensions of vessel when influence of natural convection can be disregarded. was reiterated by Tyler in 1966 and further emphasized by Barnard and Harwood in 1974. Specifically, they state: It is generally assumed that heat losses are purely conductive. While this may be valid for certain low pressure slow combustion regimes, it is unlikely to be true for cool flame and ignition regimes. While this statement is true for terrestrial experiments, purely conductive heat transport assumption is valid at microgravity (mu-g). Specifically, buoyant complexities are suppressed at mu-g and reaction-diffusion structure associated with low temperature oxidation reactions, cool flames and auto-ignitions can be studied. Without natural convection, system is simpler, does not require determination of effective heat transfer coefficient, and is a testbed for analytic and numerical models that assume pure diffusive transport. In addition, mu-g experiments will provide baseline data that will improve our understanding of effects of natural convection on Earth." @default.
- W86244032 created "2016-06-24" @default.
- W86244032 creator A5002753183 @default.
- W86244032 creator A5016477863 @default.
- W86244032 creator A5038904701 @default.
- W86244032 creator A5040052883 @default.
- W86244032 creator A5047214497 @default.
- W86244032 creator A5052743421 @default.
- W86244032 date "2001-05-01" @default.
- W86244032 modified "2023-09-27" @default.
- W86244032 title "The Cool Flames Experiment" @default.
- W86244032 cites W2063887965 @default.
- W86244032 cites W2481714479 @default.
- W86244032 hasPublicationYear "2001" @default.
- W86244032 type Work @default.
- W86244032 sameAs 86244032 @default.
- W86244032 citedByCount "0" @default.
- W86244032 crossrefType "journal-article" @default.
- W86244032 hasAuthorship W86244032A5002753183 @default.
- W86244032 hasAuthorship W86244032A5016477863 @default.
- W86244032 hasAuthorship W86244032A5038904701 @default.
- W86244032 hasAuthorship W86244032A5040052883 @default.
- W86244032 hasAuthorship W86244032A5047214497 @default.
- W86244032 hasAuthorship W86244032A5052743421 @default.
- W86244032 hasConcept C106836276 @default.
- W86244032 hasConcept C10899652 @default.
- W86244032 hasConcept C121332964 @default.
- W86244032 hasConcept C159063594 @default.
- W86244032 hasConcept C185592680 @default.
- W86244032 hasConcept C204530211 @default.
- W86244032 hasConcept C45119746 @default.
- W86244032 hasConcept C50517652 @default.
- W86244032 hasConcept C54791560 @default.
- W86244032 hasConcept C57879066 @default.
- W86244032 hasConcept C69357855 @default.
- W86244032 hasConcept C97355855 @default.
- W86244032 hasConceptScore W86244032C106836276 @default.
- W86244032 hasConceptScore W86244032C10899652 @default.
- W86244032 hasConceptScore W86244032C121332964 @default.
- W86244032 hasConceptScore W86244032C159063594 @default.
- W86244032 hasConceptScore W86244032C185592680 @default.
- W86244032 hasConceptScore W86244032C204530211 @default.
- W86244032 hasConceptScore W86244032C45119746 @default.
- W86244032 hasConceptScore W86244032C50517652 @default.
- W86244032 hasConceptScore W86244032C54791560 @default.
- W86244032 hasConceptScore W86244032C57879066 @default.
- W86244032 hasConceptScore W86244032C69357855 @default.
- W86244032 hasConceptScore W86244032C97355855 @default.
- W86244032 hasLocation W862440321 @default.
- W86244032 hasOpenAccess W86244032 @default.
- W86244032 hasPrimaryLocation W862440321 @default.
- W86244032 hasRelatedWork W1990683321 @default.
- W86244032 hasRelatedWork W1993275468 @default.
- W86244032 hasRelatedWork W1996277309 @default.
- W86244032 hasRelatedWork W2006914436 @default.
- W86244032 hasRelatedWork W2014407844 @default.
- W86244032 hasRelatedWork W2018896545 @default.
- W86244032 hasRelatedWork W2057569975 @default.
- W86244032 hasRelatedWork W2058292600 @default.
- W86244032 hasRelatedWork W2085403973 @default.
- W86244032 hasRelatedWork W2094196078 @default.
- W86244032 hasRelatedWork W2124997936 @default.
- W86244032 hasRelatedWork W2319011486 @default.
- W86244032 hasRelatedWork W2334333218 @default.
- W86244032 hasRelatedWork W2413349737 @default.
- W86244032 hasRelatedWork W2588036444 @default.
- W86244032 hasRelatedWork W2751686017 @default.
- W86244032 hasRelatedWork W2764498616 @default.
- W86244032 hasRelatedWork W2901763954 @default.
- W86244032 hasRelatedWork W2909624196 @default.
- W86244032 hasRelatedWork W3199686746 @default.
- W86244032 isParatext "false" @default.
- W86244032 isRetracted "false" @default.
- W86244032 magId "86244032" @default.
- W86244032 workType "article" @default.