Matches in SemOpenAlex for { <https://semopenalex.org/work/W863351736> ?p ?o ?g. }
- W863351736 endingPage "96" @default.
- W863351736 startingPage "89" @default.
- W863351736 abstract "Recursive least squares (RLS) dictionary learning algorithm is one of the well-known dictionary update approaches which continuously update the dictionary per arrival of new training data. In RLS algorithm a forgetting factor is added to control the memory and the effect of the previous data in the dictionary update stage. In this paper, we generalize the RLS algorithm by introducing an additional correction weight for the arrival data. This additional correction weight adaptively controls the relative consistency between the arrival data and the existing dictionary estimate. Consequently, we show that the conventional RLS is a special case of our method. Synthetic data, with and without containing outliers, are used to train both methods. Experimental results verify that adding the correction weight in our proposed method improves the recovery of original dictionary and MSE of sparse representation for both types of training data. The improvement increases as the percentage of outliers increase." @default.
- W863351736 created "2016-06-24" @default.
- W863351736 creator A5008153115 @default.
- W863351736 creator A5044933749 @default.
- W863351736 creator A5087543977 @default.
- W863351736 date "2016-01-01" @default.
- W863351736 modified "2023-10-06" @default.
- W863351736 title "Generalized adaptive weighted recursive least squares dictionary learning" @default.
- W863351736 cites W1972316063 @default.
- W863351736 cites W1980119385 @default.
- W863351736 cites W1986931325 @default.
- W863351736 cites W1988500921 @default.
- W863351736 cites W1989299554 @default.
- W863351736 cites W1994681782 @default.
- W863351736 cites W2005876975 @default.
- W863351736 cites W2061615939 @default.
- W863351736 cites W2078994778 @default.
- W863351736 cites W2079523859 @default.
- W863351736 cites W2083493778 @default.
- W863351736 cites W2099321050 @default.
- W863351736 cites W2115429828 @default.
- W863351736 cites W2116357017 @default.
- W863351736 cites W2118297240 @default.
- W863351736 cites W2128659236 @default.
- W863351736 cites W2150359011 @default.
- W863351736 cites W2151693816 @default.
- W863351736 cites W2153663612 @default.
- W863351736 cites W2158576618 @default.
- W863351736 cites W2160547390 @default.
- W863351736 cites W2163112044 @default.
- W863351736 cites W2163398148 @default.
- W863351736 cites W2165709183 @default.
- W863351736 cites W2167188281 @default.
- W863351736 cites W2171487891 @default.
- W863351736 cites W67201968 @default.
- W863351736 doi "https://doi.org/10.1016/j.sigpro.2015.06.013" @default.
- W863351736 hasPublicationYear "2016" @default.
- W863351736 type Work @default.
- W863351736 sameAs 863351736 @default.
- W863351736 citedByCount "19" @default.
- W863351736 countsByYear W8633517362016 @default.
- W863351736 countsByYear W8633517362017 @default.
- W863351736 countsByYear W8633517362018 @default.
- W863351736 countsByYear W8633517362019 @default.
- W863351736 countsByYear W8633517362020 @default.
- W863351736 countsByYear W8633517362021 @default.
- W863351736 countsByYear W8633517362022 @default.
- W863351736 countsByYear W8633517362023 @default.
- W863351736 crossrefType "journal-article" @default.
- W863351736 hasAuthorship W863351736A5008153115 @default.
- W863351736 hasAuthorship W863351736A5044933749 @default.
- W863351736 hasAuthorship W863351736A5087543977 @default.
- W863351736 hasConcept C102248274 @default.
- W863351736 hasConcept C105795698 @default.
- W863351736 hasConcept C11413529 @default.
- W863351736 hasConcept C116409475 @default.
- W863351736 hasConcept C124066611 @default.
- W863351736 hasConcept C145249878 @default.
- W863351736 hasConcept C153180895 @default.
- W863351736 hasConcept C154771677 @default.
- W863351736 hasConcept C154945302 @default.
- W863351736 hasConcept C17744445 @default.
- W863351736 hasConcept C185429906 @default.
- W863351736 hasConcept C199539241 @default.
- W863351736 hasConcept C2776359362 @default.
- W863351736 hasConcept C2776436953 @default.
- W863351736 hasConcept C2988886741 @default.
- W863351736 hasConcept C33923547 @default.
- W863351736 hasConcept C41008148 @default.
- W863351736 hasConcept C79337645 @default.
- W863351736 hasConcept C94625758 @default.
- W863351736 hasConcept C9936470 @default.
- W863351736 hasConceptScore W863351736C102248274 @default.
- W863351736 hasConceptScore W863351736C105795698 @default.
- W863351736 hasConceptScore W863351736C11413529 @default.
- W863351736 hasConceptScore W863351736C116409475 @default.
- W863351736 hasConceptScore W863351736C124066611 @default.
- W863351736 hasConceptScore W863351736C145249878 @default.
- W863351736 hasConceptScore W863351736C153180895 @default.
- W863351736 hasConceptScore W863351736C154771677 @default.
- W863351736 hasConceptScore W863351736C154945302 @default.
- W863351736 hasConceptScore W863351736C17744445 @default.
- W863351736 hasConceptScore W863351736C185429906 @default.
- W863351736 hasConceptScore W863351736C199539241 @default.
- W863351736 hasConceptScore W863351736C2776359362 @default.
- W863351736 hasConceptScore W863351736C2776436953 @default.
- W863351736 hasConceptScore W863351736C2988886741 @default.
- W863351736 hasConceptScore W863351736C33923547 @default.
- W863351736 hasConceptScore W863351736C41008148 @default.
- W863351736 hasConceptScore W863351736C79337645 @default.
- W863351736 hasConceptScore W863351736C94625758 @default.
- W863351736 hasConceptScore W863351736C9936470 @default.
- W863351736 hasLocation W8633517361 @default.
- W863351736 hasOpenAccess W863351736 @default.
- W863351736 hasPrimaryLocation W8633517361 @default.
- W863351736 hasRelatedWork W1532849395 @default.
- W863351736 hasRelatedWork W1558072243 @default.
- W863351736 hasRelatedWork W1989299554 @default.