Matches in SemOpenAlex for { <https://semopenalex.org/work/W86362818> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W86362818 abstract "In this paper a time domain recursive digital filter model, based on recurrent neural network is proposed. This problem can be considered as a training procedure of two layer recurrent neural network. The proposed neural network training algorithm is based on determination of the sensitivity coefficients of the recurrent system. The dynamic model of two layer recurrent neural network described by system of recurrent equations is considered. Time domain modeling approach has been applied to design the Nyquist recursive digital filter. Digital filter parameters are obtained by optimization procedure when the requirements to the impulse response in time domain are given. Modern devices for digital signal processing in particular digital filters represent dynamical systems described with the difference equations. This fact allows the application of neural networks for defining the design problem in time domain, for modeling and realization of the non-recursive (finite impulse response – FIR), recursive (infinite impulse response – IIR) and adaptive digital filters (DF). One approach for the 1-D FIR digital filter design based on the weighted mean square method and neural network to state the approximation problem is proposed in [1]. Some methods for the non-linear digital filters design using neural networks are considered in [2]. Basic results related to the discrete dynamical systems approximation using neural networks are discussed in [3]. In this paper a 1-D IIR digital filter neural network model is proposed. Training sequences of input excitations and corresponding filter responses are generated for the training procedure of this model with given neural network structure. The digital filter model has been trained in such a way that with given predetermined input signal, the output variable approximates the target function in mean square sense. Time domain modeling approach has been applied to design the Nyquist recursive digital filter. Digital filter parameters are obtained by optimization procedure when the requirements to the impulse response in time domain are given. 1. RECURSIVE DIGITAL FILTER MODELING BASED ON NEURAL NETWORK The neural network structure used for the recursive digital filter modeling is" @default.
- W86362818 created "2016-06-24" @default.
- W86362818 creator A5044438933 @default.
- W86362818 date "2004-01-01" @default.
- W86362818 modified "2023-09-27" @default.
- W86362818 title "TIME DOMAIN RECURSIVE DIGITAL FILTER MODELING BASED ON RECURRENT NEURAL NETWORK TRAINING" @default.
- W86362818 cites W2095941969 @default.
- W86362818 cites W2103246489 @default.
- W86362818 cites W2137563395 @default.
- W86362818 hasPublicationYear "2004" @default.
- W86362818 type Work @default.
- W86362818 sameAs 86362818 @default.
- W86362818 citedByCount "1" @default.
- W86362818 crossrefType "journal-article" @default.
- W86362818 hasAuthorship W86362818A5044438933 @default.
- W86362818 hasConcept C100106864 @default.
- W86362818 hasConcept C102248274 @default.
- W86362818 hasConcept C103824480 @default.
- W86362818 hasConcept C106131492 @default.
- W86362818 hasConcept C11413529 @default.
- W86362818 hasConcept C134306372 @default.
- W86362818 hasConcept C147168706 @default.
- W86362818 hasConcept C154945302 @default.
- W86362818 hasConcept C175202392 @default.
- W86362818 hasConcept C183816354 @default.
- W86362818 hasConcept C198386975 @default.
- W86362818 hasConcept C22597639 @default.
- W86362818 hasConcept C2775924081 @default.
- W86362818 hasConcept C31972630 @default.
- W86362818 hasConcept C33923547 @default.
- W86362818 hasConcept C36390408 @default.
- W86362818 hasConcept C41008148 @default.
- W86362818 hasConcept C47446073 @default.
- W86362818 hasConcept C50644808 @default.
- W86362818 hasConcept C70518719 @default.
- W86362818 hasConcept C72279823 @default.
- W86362818 hasConcept C76826599 @default.
- W86362818 hasConceptScore W86362818C100106864 @default.
- W86362818 hasConceptScore W86362818C102248274 @default.
- W86362818 hasConceptScore W86362818C103824480 @default.
- W86362818 hasConceptScore W86362818C106131492 @default.
- W86362818 hasConceptScore W86362818C11413529 @default.
- W86362818 hasConceptScore W86362818C134306372 @default.
- W86362818 hasConceptScore W86362818C147168706 @default.
- W86362818 hasConceptScore W86362818C154945302 @default.
- W86362818 hasConceptScore W86362818C175202392 @default.
- W86362818 hasConceptScore W86362818C183816354 @default.
- W86362818 hasConceptScore W86362818C198386975 @default.
- W86362818 hasConceptScore W86362818C22597639 @default.
- W86362818 hasConceptScore W86362818C2775924081 @default.
- W86362818 hasConceptScore W86362818C31972630 @default.
- W86362818 hasConceptScore W86362818C33923547 @default.
- W86362818 hasConceptScore W86362818C36390408 @default.
- W86362818 hasConceptScore W86362818C41008148 @default.
- W86362818 hasConceptScore W86362818C47446073 @default.
- W86362818 hasConceptScore W86362818C50644808 @default.
- W86362818 hasConceptScore W86362818C70518719 @default.
- W86362818 hasConceptScore W86362818C72279823 @default.
- W86362818 hasConceptScore W86362818C76826599 @default.
- W86362818 hasLocation W863628181 @default.
- W86362818 hasOpenAccess W86362818 @default.
- W86362818 hasPrimaryLocation W863628181 @default.
- W86362818 hasRelatedWork W1674036416 @default.
- W86362818 hasRelatedWork W2016851633 @default.
- W86362818 hasRelatedWork W2109428366 @default.
- W86362818 hasRelatedWork W2121673462 @default.
- W86362818 hasRelatedWork W2122263741 @default.
- W86362818 hasRelatedWork W2146574746 @default.
- W86362818 hasRelatedWork W2185643529 @default.
- W86362818 hasRelatedWork W2523158658 @default.
- W86362818 hasRelatedWork W2810686984 @default.
- W86362818 hasRelatedWork W2897275046 @default.
- W86362818 hasRelatedWork W2903344356 @default.
- W86362818 hasRelatedWork W2914035560 @default.
- W86362818 hasRelatedWork W2990632099 @default.
- W86362818 hasRelatedWork W3092964667 @default.
- W86362818 hasRelatedWork W3153381873 @default.
- W86362818 hasRelatedWork W317797538 @default.
- W86362818 hasRelatedWork W3187681081 @default.
- W86362818 hasRelatedWork W3205552226 @default.
- W86362818 hasRelatedWork W66514774 @default.
- W86362818 hasRelatedWork W762228175 @default.
- W86362818 isParatext "false" @default.
- W86362818 isRetracted "false" @default.
- W86362818 magId "86362818" @default.
- W86362818 workType "article" @default.