Matches in SemOpenAlex for { <https://semopenalex.org/work/W866015105> ?p ?o ?g. }
- W866015105 endingPage "3428" @default.
- W866015105 startingPage "3418" @default.
- W866015105 abstract "In this paper, we propose a generalized scale mixture family of distributions, namely the Power Exponential Scale Mixture (PESM) family, to model the sparsity inducing priors currently in use for sparse signal recovery (SSR). We show that the successful and popular methods such as LASSO, Reweighted $ell_1$ and Reweighted $ell_2$ methods can be formulated in an unified manner in a maximum a posteriori (MAP) or Type I Bayesian framework using an appropriate member of the PESM family as the sparsity inducing prior. In addition, exploiting the natural hierarchical framework induced by the PESM family, we utilize these priors in a Type II framework and develop the corresponding EM based estimation algorithms. Some insight into the differences between Type I and Type II methods is provided and of particular interest in the algorithmic development is the Type II variant of the popular and successful reweighted $ell_1$ method. Extensive empirical results are provided and they show that the Type II methods exhibit better support recovery than the corresponding Type I methods." @default.
- W866015105 created "2016-06-24" @default.
- W866015105 creator A5001700017 @default.
- W866015105 creator A5091775011 @default.
- W866015105 date "2016-07-01" @default.
- W866015105 modified "2023-10-17" @default.
- W866015105 title "Type I and Type II Bayesian Methods for Sparse Signal Recovery Using Scale Mixtures" @default.
- W866015105 cites W1497088612 @default.
- W866015105 cites W1536751476 @default.
- W866015105 cites W1975377467 @default.
- W866015105 cites W1976709621 @default.
- W866015105 cites W1982652137 @default.
- W866015105 cites W1998481588 @default.
- W866015105 cites W1998491684 @default.
- W866015105 cites W2026933032 @default.
- W866015105 cites W2029299478 @default.
- W866015105 cites W2049502219 @default.
- W866015105 cites W2050834445 @default.
- W866015105 cites W2060546024 @default.
- W866015105 cites W2063761188 @default.
- W866015105 cites W2065513175 @default.
- W866015105 cites W2066206585 @default.
- W866015105 cites W2071284784 @default.
- W866015105 cites W2107861471 @default.
- W866015105 cites W2116723448 @default.
- W866015105 cites W2117988331 @default.
- W866015105 cites W2119883478 @default.
- W866015105 cites W2135859872 @default.
- W866015105 cites W2143163931 @default.
- W866015105 cites W2146000945 @default.
- W866015105 cites W2146571341 @default.
- W866015105 cites W2152279006 @default.
- W866015105 cites W2154332973 @default.
- W866015105 cites W2161765392 @default.
- W866015105 cites W2166221887 @default.
- W866015105 cites W2168745297 @default.
- W866015105 cites W2894923989 @default.
- W866015105 cites W4235713725 @default.
- W866015105 cites W4246701766 @default.
- W866015105 cites W4250955649 @default.
- W866015105 cites W4300263211 @default.
- W866015105 doi "https://doi.org/10.1109/tsp.2016.2546231" @default.
- W866015105 hasPublicationYear "2016" @default.
- W866015105 type Work @default.
- W866015105 sameAs 866015105 @default.
- W866015105 citedByCount "99" @default.
- W866015105 countsByYear W8660151052015 @default.
- W866015105 countsByYear W8660151052016 @default.
- W866015105 countsByYear W8660151052017 @default.
- W866015105 countsByYear W8660151052018 @default.
- W866015105 countsByYear W8660151052019 @default.
- W866015105 countsByYear W8660151052020 @default.
- W866015105 countsByYear W8660151052021 @default.
- W866015105 countsByYear W8660151052022 @default.
- W866015105 countsByYear W8660151052023 @default.
- W866015105 crossrefType "journal-article" @default.
- W866015105 hasAuthorship W866015105A5001700017 @default.
- W866015105 hasAuthorship W866015105A5091775011 @default.
- W866015105 hasBestOaLocation W8660151051 @default.
- W866015105 hasConcept C105795698 @default.
- W866015105 hasConcept C107673813 @default.
- W866015105 hasConcept C11413529 @default.
- W866015105 hasConcept C121332964 @default.
- W866015105 hasConcept C136764020 @default.
- W866015105 hasConcept C153180895 @default.
- W866015105 hasConcept C154945302 @default.
- W866015105 hasConcept C177769412 @default.
- W866015105 hasConcept C18903297 @default.
- W866015105 hasConcept C2777299769 @default.
- W866015105 hasConcept C2778755073 @default.
- W866015105 hasConcept C33923547 @default.
- W866015105 hasConcept C37616216 @default.
- W866015105 hasConcept C41008148 @default.
- W866015105 hasConcept C49781872 @default.
- W866015105 hasConcept C55974624 @default.
- W866015105 hasConcept C62520636 @default.
- W866015105 hasConcept C86803240 @default.
- W866015105 hasConcept C9810830 @default.
- W866015105 hasConceptScore W866015105C105795698 @default.
- W866015105 hasConceptScore W866015105C107673813 @default.
- W866015105 hasConceptScore W866015105C11413529 @default.
- W866015105 hasConceptScore W866015105C121332964 @default.
- W866015105 hasConceptScore W866015105C136764020 @default.
- W866015105 hasConceptScore W866015105C153180895 @default.
- W866015105 hasConceptScore W866015105C154945302 @default.
- W866015105 hasConceptScore W866015105C177769412 @default.
- W866015105 hasConceptScore W866015105C18903297 @default.
- W866015105 hasConceptScore W866015105C2777299769 @default.
- W866015105 hasConceptScore W866015105C2778755073 @default.
- W866015105 hasConceptScore W866015105C33923547 @default.
- W866015105 hasConceptScore W866015105C37616216 @default.
- W866015105 hasConceptScore W866015105C41008148 @default.
- W866015105 hasConceptScore W866015105C49781872 @default.
- W866015105 hasConceptScore W866015105C55974624 @default.
- W866015105 hasConceptScore W866015105C62520636 @default.
- W866015105 hasConceptScore W866015105C86803240 @default.
- W866015105 hasConceptScore W866015105C9810830 @default.
- W866015105 hasFunder F4320306076 @default.