Matches in SemOpenAlex for { <https://semopenalex.org/work/W866358875> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W866358875 abstract "The field of machine learning has made a lot of progress in the recent years. As it is used more frequently in real-world problems, a new issue has emerged: Studies have shown that imbalanced data can lead to poor performance by some classifiers. Imbalanced datasets are composed of many ''normal'' examples and few ''interesting'' ones (which correspond to the observed real-world phenomenon). Typical examples are credit card fraud detection, detection and diagnosis of diseases in tissue samples and detection of suspicious behaviur in surveillance camera videos. The imbalance in data can be ''natural'' or we can have imbalanced data due to economic or privacy reasons.When presented with highly imbalanced data, some standard classifiers can ignore the minority class which leads to lower classification accuracy.Various solutions have been proposed to counter this problem. Some solutions include modifications of classification algorithms while other solutions modify the data itself. In this thesis, we focus onto the latter. Random undersampling, random oversampling and SMOTE (Synthetic Minority Oversampling TEchnique) have been implemented and tested. In addition, three new varations of SMOTE algorithm have been proposed in this thesis. All three estimate classification reliability (Kukar et al.) of minority examples and then use these estimates while generating synthetic examples.The data balancing algorithms were tested with 10-fold cross validation using 10 datasets from the UCI Machine Learning Repository and four different classifiers (decision trees, naive Bayes, k-nearest neighbors algorithm and support vector machines).The results have shown that it is feasible to improve classifiers' performance by balancing the data with one of our versions of SMOTE algorithm. The most significant improvements in classification accuracy were observed when we balanced small datasets with low shares of minority examples." @default.
- W866358875 created "2016-06-24" @default.
- W866358875 creator A5031441429 @default.
- W866358875 date "2010-09-08" @default.
- W866358875 modified "2023-09-27" @default.
- W866358875 title "Directed generation of synthetic examples in machine learning based on the classification reliability estimates" @default.
- W866358875 hasPublicationYear "2010" @default.
- W866358875 type Work @default.
- W866358875 sameAs 866358875 @default.
- W866358875 citedByCount "0" @default.
- W866358875 crossrefType "dissertation" @default.
- W866358875 hasAuthorship W866358875A5031441429 @default.
- W866358875 hasConcept C110083411 @default.
- W866358875 hasConcept C119857082 @default.
- W866358875 hasConcept C121332964 @default.
- W866358875 hasConcept C12267149 @default.
- W866358875 hasConcept C124101348 @default.
- W866358875 hasConcept C136536468 @default.
- W866358875 hasConcept C154945302 @default.
- W866358875 hasConcept C163258240 @default.
- W866358875 hasConcept C169258074 @default.
- W866358875 hasConcept C197323446 @default.
- W866358875 hasConcept C202444582 @default.
- W866358875 hasConcept C2776257435 @default.
- W866358875 hasConcept C31258907 @default.
- W866358875 hasConcept C33923547 @default.
- W866358875 hasConcept C41008148 @default.
- W866358875 hasConcept C43214815 @default.
- W866358875 hasConcept C52001869 @default.
- W866358875 hasConcept C62520636 @default.
- W866358875 hasConcept C84525736 @default.
- W866358875 hasConcept C9652623 @default.
- W866358875 hasConceptScore W866358875C110083411 @default.
- W866358875 hasConceptScore W866358875C119857082 @default.
- W866358875 hasConceptScore W866358875C121332964 @default.
- W866358875 hasConceptScore W866358875C12267149 @default.
- W866358875 hasConceptScore W866358875C124101348 @default.
- W866358875 hasConceptScore W866358875C136536468 @default.
- W866358875 hasConceptScore W866358875C154945302 @default.
- W866358875 hasConceptScore W866358875C163258240 @default.
- W866358875 hasConceptScore W866358875C169258074 @default.
- W866358875 hasConceptScore W866358875C197323446 @default.
- W866358875 hasConceptScore W866358875C202444582 @default.
- W866358875 hasConceptScore W866358875C2776257435 @default.
- W866358875 hasConceptScore W866358875C31258907 @default.
- W866358875 hasConceptScore W866358875C33923547 @default.
- W866358875 hasConceptScore W866358875C41008148 @default.
- W866358875 hasConceptScore W866358875C43214815 @default.
- W866358875 hasConceptScore W866358875C52001869 @default.
- W866358875 hasConceptScore W866358875C62520636 @default.
- W866358875 hasConceptScore W866358875C84525736 @default.
- W866358875 hasConceptScore W866358875C9652623 @default.
- W866358875 hasLocation W8663588751 @default.
- W866358875 hasOpenAccess W866358875 @default.
- W866358875 hasPrimaryLocation W8663588751 @default.
- W866358875 hasRelatedWork W1542204591 @default.
- W866358875 hasRelatedWork W1570070578 @default.
- W866358875 hasRelatedWork W166350134 @default.
- W866358875 hasRelatedWork W1975129897 @default.
- W866358875 hasRelatedWork W2768552067 @default.
- W866358875 hasRelatedWork W2772832743 @default.
- W866358875 hasRelatedWork W2795083858 @default.
- W866358875 hasRelatedWork W2890551119 @default.
- W866358875 hasRelatedWork W2891710018 @default.
- W866358875 hasRelatedWork W2905582729 @default.
- W866358875 hasRelatedWork W2909588969 @default.
- W866358875 hasRelatedWork W2932067728 @default.
- W866358875 hasRelatedWork W2951125088 @default.
- W866358875 hasRelatedWork W2995039619 @default.
- W866358875 hasRelatedWork W3004829354 @default.
- W866358875 hasRelatedWork W3047645378 @default.
- W866358875 hasRelatedWork W3055496383 @default.
- W866358875 hasRelatedWork W3175845646 @default.
- W866358875 hasRelatedWork W3178306627 @default.
- W866358875 hasRelatedWork W3185165902 @default.
- W866358875 isParatext "false" @default.
- W866358875 isRetracted "false" @default.
- W866358875 magId "866358875" @default.
- W866358875 workType "dissertation" @default.