Matches in SemOpenAlex for { <https://semopenalex.org/work/W86707149> ?p ?o ?g. }
- W86707149 abstract "The aim of this thesis is to improve risk measurement estimation by incorporating extra information in the form of constraint into completely non-parametric smoothing techniques. A similar approach has been applied in empirical likelihood analysis. The method of constraints incorporates bootstrap resampling techniques, in particular, biased bootstrap. This thesis brings together formal estimation methods, empirical information use, and computationally intensive methods. In this thesis, the constraint approach is applied to non-parametric smoothing estimators to improve the estimation or modelling of risk measures. We consider estimation of Value-at-Risk, of intraday volatility for market risk, and of recovery rate densities for credit risk management. Firstly, we study Value-at-Risk (VaR) and Expected Shortfall (ES) estimation. VaR and ES estimation are strongly related to quantile estimation. Hence, tail estimation is of interest in its own right. We employ constrained and unconstrained kernel density estimators to estimate tail distributions, and we estimate quantiles from the fitted tail distribution. The constrained kernel density estimator is an application of the biased bootstrap technique proposed by Hall & Presnell (1998). The estimator that we use for the constrained kernel estimator is the Harrell-Davis (H-D) quantile estimator. We calibrate the performance of the constrained and unconstrained kernel density estimators by estimating tail densities based on samples from Normal and Student-t distributions. We find a significant improvement in fitting heavy tail distributions using the constrained kernel estimator, when used in conjunction with the H-D quantile estimator. We also present an empirical study demonstrating VaR and ES calculation. A credit event in financial markets is defined as the event that a party fails to pay an obligation to another, and credit risk is defined as the measure of uncertainty of such events. Recovery rate, in the credit risk context, is the rate of recuperation when a credit event occurs. It is defined as Recovery rate = 1 - LGD, where LGD is the rate of loss given default. From this point of view, the recovery rate is a key element both for credit risk management and for pricing credit derivatives. Only the credit risk management is considered in this thesis. To avoid strong assumptions about the form of the recovery rate density in current approaches, we propose a non-parametric technique incorporating a mode constraint, with the adjusted Beta kernel employed to estimate the recovery density function. An encouraging result for the constrained Beta kernel estimator is illustrated by a large number of simulations, as genuine data are very confidential and difficult to obtain. Modelling high frequency data is a popular topic in contemporary finance. The intraday volatility patterns of standard indices and market-traded assets have been well documented in the literature. They show that the volatility patterns reflect the different characteristics of different stock markets, such as double U-shaped volatility pattern reported in the Hang Seng Index (HSI). We aim to capture this intraday volatility pattern using a non-parametric regression model. In particular, we propose a constrained function approximation technique to formally test the structure of the pattern and to approximate the location of the anti-mode of the U-shape. We illustrate this methodology on the HSI as an empirical example." @default.
- W86707149 created "2016-06-24" @default.
- W86707149 creator A5054139897 @default.
- W86707149 date "2008-01-01" @default.
- W86707149 modified "2023-09-24" @default.
- W86707149 title "Applications of constrained non-parametric smoothing methods in computing financial risk" @default.
- W86707149 cites W1488669089 @default.
- W86707149 cites W1498464051 @default.
- W86707149 cites W1536484404 @default.
- W86707149 cites W1551275368 @default.
- W86707149 cites W1647779468 @default.
- W86707149 cites W1960367365 @default.
- W86707149 cites W1970375475 @default.
- W86707149 cites W1975285668 @default.
- W86707149 cites W1978135292 @default.
- W86707149 cites W1983729347 @default.
- W86707149 cites W1994555697 @default.
- W86707149 cites W1995674413 @default.
- W86707149 cites W1995945562 @default.
- W86707149 cites W2000791761 @default.
- W86707149 cites W2001621291 @default.
- W86707149 cites W2002797541 @default.
- W86707149 cites W2019291268 @default.
- W86707149 cites W2022127031 @default.
- W86707149 cites W2026403782 @default.
- W86707149 cites W2026817825 @default.
- W86707149 cites W2029347334 @default.
- W86707149 cites W2029698240 @default.
- W86707149 cites W2030548181 @default.
- W86707149 cites W2034697537 @default.
- W86707149 cites W2042422275 @default.
- W86707149 cites W2043277109 @default.
- W86707149 cites W2044458394 @default.
- W86707149 cites W2045526897 @default.
- W86707149 cites W2052524623 @default.
- W86707149 cites W2060628200 @default.
- W86707149 cites W2065394804 @default.
- W86707149 cites W2067395426 @default.
- W86707149 cites W2086031397 @default.
- W86707149 cites W2087714606 @default.
- W86707149 cites W2091710893 @default.
- W86707149 cites W2105101055 @default.
- W86707149 cites W2112426182 @default.
- W86707149 cites W2115367426 @default.
- W86707149 cites W2116855184 @default.
- W86707149 cites W2118020555 @default.
- W86707149 cites W2118091795 @default.
- W86707149 cites W2118320330 @default.
- W86707149 cites W2129905273 @default.
- W86707149 cites W2132527237 @default.
- W86707149 cites W2142989223 @default.
- W86707149 cites W2150104128 @default.
- W86707149 cites W2156644192 @default.
- W86707149 cites W2157495061 @default.
- W86707149 cites W2170206178 @default.
- W86707149 cites W2182975604 @default.
- W86707149 cites W2320278257 @default.
- W86707149 cites W2331253800 @default.
- W86707149 cites W2487893106 @default.
- W86707149 cites W2610289416 @default.
- W86707149 hasPublicationYear "2008" @default.
- W86707149 type Work @default.
- W86707149 sameAs 86707149 @default.
- W86707149 citedByCount "0" @default.
- W86707149 crossrefType "dissertation" @default.
- W86707149 hasAuthorship W86707149A5054139897 @default.
- W86707149 hasConcept C10138342 @default.
- W86707149 hasConcept C102366305 @default.
- W86707149 hasConcept C105795698 @default.
- W86707149 hasConcept C114614502 @default.
- W86707149 hasConcept C118671147 @default.
- W86707149 hasConcept C122280245 @default.
- W86707149 hasConcept C12267149 @default.
- W86707149 hasConcept C126255220 @default.
- W86707149 hasConcept C149782125 @default.
- W86707149 hasConcept C154945302 @default.
- W86707149 hasConcept C162324750 @default.
- W86707149 hasConcept C185429906 @default.
- W86707149 hasConcept C195699287 @default.
- W86707149 hasConcept C27406209 @default.
- W86707149 hasConcept C32896092 @default.
- W86707149 hasConcept C33923547 @default.
- W86707149 hasConcept C3770464 @default.
- W86707149 hasConcept C41008148 @default.
- W86707149 hasConcept C5496284 @default.
- W86707149 hasConcept C71134354 @default.
- W86707149 hasConcept C74193536 @default.
- W86707149 hasConcept C75866337 @default.
- W86707149 hasConcept C84894716 @default.
- W86707149 hasConcept C94128290 @default.
- W86707149 hasConceptScore W86707149C10138342 @default.
- W86707149 hasConceptScore W86707149C102366305 @default.
- W86707149 hasConceptScore W86707149C105795698 @default.
- W86707149 hasConceptScore W86707149C114614502 @default.
- W86707149 hasConceptScore W86707149C118671147 @default.
- W86707149 hasConceptScore W86707149C122280245 @default.
- W86707149 hasConceptScore W86707149C12267149 @default.
- W86707149 hasConceptScore W86707149C126255220 @default.
- W86707149 hasConceptScore W86707149C149782125 @default.
- W86707149 hasConceptScore W86707149C154945302 @default.