Matches in SemOpenAlex for { <https://semopenalex.org/work/W86960657> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W86960657 abstract "Parallel computing techniques can greatly facilitate traditional data mining algorithms to efficiently tackle learning tasks that are characterized by high computational complexity and huge amounts of data, to meet the requirement of real-world applications. However, most of these techniques require fully labeled training sets, which is a challenging requirement to meet. In order to address this problem, we investigate widely used Positive and Unlabeled (PU) learning algorithms including PU information gain and a newly developed PU Gini index combining with popular parallel computing framework - Random Forest (RF), thereby enabling parallel data mining to learn from only positive and unlabeled samples. The proposed framework, termed PURF (Positive Unlabeled Random Forest), is able to learn from positive and unlabeled instances and achieve comparable classifcation performance with RF trained by fully labeled data through parallel computing according to experiments on both synthetic and real-world UCI datasets. PURF is a promising framework that facilitates PU learning in parallel data mining and is anticipated to be useful framework in many real-world parallel computing applications with huge amounts of unlabeled data." @default.
- W86960657 created "2016-06-24" @default.
- W86960657 creator A5028889613 @default.
- W86960657 creator A5032447166 @default.
- W86960657 date "2014-01-01" @default.
- W86960657 modified "2023-09-27" @default.
- W86960657 title "Towards Positive Unlabeled Learning for Parallel Data Mining: A Random Forest Framework" @default.
- W86960657 cites W1590474978 @default.
- W86960657 cites W1969730822 @default.
- W86960657 cites W1970772238 @default.
- W86960657 cites W2007228933 @default.
- W86960657 cites W2012914116 @default.
- W86960657 cites W2025122101 @default.
- W86960657 cites W2041620226 @default.
- W86960657 cites W2051736238 @default.
- W86960657 cites W2064853889 @default.
- W86960657 cites W2074538482 @default.
- W86960657 cites W2093456341 @default.
- W86960657 cites W2102589938 @default.
- W86960657 cites W2103815459 @default.
- W86960657 cites W2123958887 @default.
- W86960657 cites W2134510195 @default.
- W86960657 cites W2137860515 @default.
- W86960657 cites W2146807976 @default.
- W86960657 cites W2170355247 @default.
- W86960657 cites W2911964244 @default.
- W86960657 cites W4243150419 @default.
- W86960657 cites W4248050719 @default.
- W86960657 doi "https://doi.org/10.1007/978-3-319-14717-8_45" @default.
- W86960657 hasPublicationYear "2014" @default.
- W86960657 type Work @default.
- W86960657 sameAs 86960657 @default.
- W86960657 citedByCount "8" @default.
- W86960657 countsByYear W869606572015 @default.
- W86960657 countsByYear W869606572019 @default.
- W86960657 countsByYear W869606572020 @default.
- W86960657 countsByYear W869606572021 @default.
- W86960657 crossrefType "book-chapter" @default.
- W86960657 hasAuthorship W86960657A5028889613 @default.
- W86960657 hasAuthorship W86960657A5032447166 @default.
- W86960657 hasConcept C119857082 @default.
- W86960657 hasConcept C124101348 @default.
- W86960657 hasConcept C154945302 @default.
- W86960657 hasConcept C169258074 @default.
- W86960657 hasConcept C41008148 @default.
- W86960657 hasConcept C75684735 @default.
- W86960657 hasConceptScore W86960657C119857082 @default.
- W86960657 hasConceptScore W86960657C124101348 @default.
- W86960657 hasConceptScore W86960657C154945302 @default.
- W86960657 hasConceptScore W86960657C169258074 @default.
- W86960657 hasConceptScore W86960657C41008148 @default.
- W86960657 hasConceptScore W86960657C75684735 @default.
- W86960657 hasLocation W869606571 @default.
- W86960657 hasOpenAccess W86960657 @default.
- W86960657 hasPrimaryLocation W869606571 @default.
- W86960657 hasRelatedWork W1606774037 @default.
- W86960657 hasRelatedWork W1975052039 @default.
- W86960657 hasRelatedWork W1991049327 @default.
- W86960657 hasRelatedWork W2050871273 @default.
- W86960657 hasRelatedWork W2080431242 @default.
- W86960657 hasRelatedWork W2123958887 @default.
- W86960657 hasRelatedWork W2129767422 @default.
- W86960657 hasRelatedWork W2166452903 @default.
- W86960657 hasRelatedWork W2224830355 @default.
- W86960657 hasRelatedWork W2299170082 @default.
- W86960657 hasRelatedWork W2783702157 @default.
- W86960657 hasRelatedWork W2809951144 @default.
- W86960657 hasRelatedWork W2904335665 @default.
- W86960657 hasRelatedWork W2914907999 @default.
- W86960657 hasRelatedWork W2983598759 @default.
- W86960657 hasRelatedWork W3018512573 @default.
- W86960657 hasRelatedWork W3035700741 @default.
- W86960657 hasRelatedWork W3080353943 @default.
- W86960657 hasRelatedWork W3154948645 @default.
- W86960657 hasRelatedWork W3169312626 @default.
- W86960657 isParatext "false" @default.
- W86960657 isRetracted "false" @default.
- W86960657 magId "86960657" @default.
- W86960657 workType "book-chapter" @default.