Matches in SemOpenAlex for { <https://semopenalex.org/work/W87204544> ?p ?o ?g. }
- W87204544 abstract "All interfaces offer resistance to heat transport. As the size of a device or structure approaches nanometer lengthscales, the contribution of the interface thermal resistance often becomes comparable to the intrinsic thermal resistance offered by the device or structure itself. In many microelectronic devices, heat has to transfer across a metalnonmetal interface, and a better understanding about the origins of this interface thermal conductance (inverse of the interface thermal resistance) is critical in improving the performance of these devices. In this dissertation, heat transport across different metalnonmetal interfaces are investigated with the primary goal of gaining qualitative and quantitative insight into the heat transport mechanisms across such interfaces. A timedomain thermoreflectance (TDTR) system is used to measure the thermal properties at the nanoscale. TDTR is an optical pump-probe technique, and it is capable of measuring thermal conductivity, k, and interface thermal conductance, G, simultaneously. The first study examines k and G for amorphous and crystalline Zr47Cu31Al13Ni9 metallic alloys that are in contact with poly-crystalline Y2O3. The motivation behind this study is to determine the relative importance of energy coupling mechanisms such as electron-phonon or phonon-phonon coupling across the interface by changing the material structure (from amorphous to crystalline), but not the composition. From the TDTR measurements k=4.5 W m K for the amorphous metallic glass of Zr47Cu31Al13Ni9, and k=5.0 W m K for the crystalline Zr47Cu31Al13Ni9. TDTR also gives G=23 MW m K for the metallic glass/Y2O3 interface and G=26 MW m K for the interface between the crystalline Zr47Cu31Al13Ni9 and Y2O3. The thermal conductivity of the poly-crystalline Y2O3 layer is found to be k=5.0 W m K. Despite the small difference between k and G for the two alloys, the results are repeatable and they indicate that the structure of the alloy plays a role in the electron-phonon coupling and interface conductance. The second experimental study examines the effect of nickel nanoparticle size on the thermal transport in multilayer nanocomposites. These nanocomposites consist of five alternating layers of nickel nanoparticles and yttria stabilized zirconia (YSZ) spacer layers that are grown with pulsed laser deposition. Using TDTR, thermal conductivities of k=1.8, 2.4, 2.3, and 3.0 W m K are found for nanocomposites with nickel nanoparticle diameters of 7, 21, 24, and 38 nm, respectively, and k=2.5 W m K for a single 80 nm thick layer of YSZ. The results indicate that the overall thermal conductivity of these nanocomposites is strongly influenced by the Ni nanoparticle size and the interface thermal conductance between the Ni particles and the YSZ matrix. An effective medium theory is used to estimate the lower limits for the interface thermal conductance between the nickel nanoparticles and the YSZ matrix (G>170 MW m K), and the nickel nanoparticle thermal conductivity." @default.
- W87204544 created "2016-06-24" @default.
- W87204544 creator A5006786147 @default.
- W87204544 creator A5040132491 @default.
- W87204544 creator A5044750174 @default.
- W87204544 creator A5046748185 @default.
- W87204544 creator A5050439206 @default.
- W87204544 creator A5068960578 @default.
- W87204544 date "2009-05-13" @default.
- W87204544 modified "2023-09-27" @default.
- W87204544 title "Heat Transport across Dissimilar Materials" @default.
- W87204544 cites W1513915111 @default.
- W87204544 cites W1568608899 @default.
- W87204544 cites W1640153728 @default.
- W87204544 cites W1678478027 @default.
- W87204544 cites W1851322391 @default.
- W87204544 cites W1970702520 @default.
- W87204544 cites W1976431068 @default.
- W87204544 cites W1981033330 @default.
- W87204544 cites W1986838597 @default.
- W87204544 cites W1988893847 @default.
- W87204544 cites W2001746858 @default.
- W87204544 cites W2004164487 @default.
- W87204544 cites W2006095159 @default.
- W87204544 cites W2006645986 @default.
- W87204544 cites W2008342341 @default.
- W87204544 cites W2009517137 @default.
- W87204544 cites W2014256107 @default.
- W87204544 cites W2014771237 @default.
- W87204544 cites W2018240900 @default.
- W87204544 cites W2019297315 @default.
- W87204544 cites W2019414150 @default.
- W87204544 cites W2022223713 @default.
- W87204544 cites W2022881757 @default.
- W87204544 cites W2029172829 @default.
- W87204544 cites W2031738427 @default.
- W87204544 cites W2032695760 @default.
- W87204544 cites W2034286589 @default.
- W87204544 cites W2042056247 @default.
- W87204544 cites W2044214323 @default.
- W87204544 cites W2045647932 @default.
- W87204544 cites W2047043021 @default.
- W87204544 cites W2050622734 @default.
- W87204544 cites W2050674108 @default.
- W87204544 cites W2056722718 @default.
- W87204544 cites W2056831945 @default.
- W87204544 cites W2062409798 @default.
- W87204544 cites W2062874253 @default.
- W87204544 cites W2063521360 @default.
- W87204544 cites W2065030863 @default.
- W87204544 cites W2066434629 @default.
- W87204544 cites W2067806795 @default.
- W87204544 cites W2068905262 @default.
- W87204544 cites W2072316569 @default.
- W87204544 cites W2073048265 @default.
- W87204544 cites W2077023943 @default.
- W87204544 cites W2081270241 @default.
- W87204544 cites W2083387018 @default.
- W87204544 cites W2084127123 @default.
- W87204544 cites W2084653803 @default.
- W87204544 cites W2086376647 @default.
- W87204544 cites W2086424065 @default.
- W87204544 cites W2086778233 @default.
- W87204544 cites W2089111006 @default.
- W87204544 cites W2090797593 @default.
- W87204544 cites W2091830839 @default.
- W87204544 cites W2101565474 @default.
- W87204544 cites W2102918085 @default.
- W87204544 cites W2107519814 @default.
- W87204544 cites W2110111661 @default.
- W87204544 cites W2117208350 @default.
- W87204544 cites W2125140913 @default.
- W87204544 cites W2138697745 @default.
- W87204544 cites W2140451025 @default.
- W87204544 cites W2148772372 @default.
- W87204544 cites W2259658882 @default.
- W87204544 cites W2951832563 @default.
- W87204544 cites W3023767770 @default.
- W87204544 cites W3148284042 @default.
- W87204544 cites W3149491881 @default.
- W87204544 cites W389868541 @default.
- W87204544 cites W971766965 @default.
- W87204544 cites W2460035963 @default.
- W87204544 cites W2550800700 @default.
- W87204544 cites W3148879615 @default.
- W87204544 hasPublicationYear "2009" @default.
- W87204544 type Work @default.
- W87204544 sameAs 87204544 @default.
- W87204544 citedByCount "0" @default.
- W87204544 crossrefType "dissertation" @default.
- W87204544 hasAuthorship W87204544A5006786147 @default.
- W87204544 hasAuthorship W87204544A5040132491 @default.
- W87204544 hasAuthorship W87204544A5044750174 @default.
- W87204544 hasAuthorship W87204544A5046748185 @default.
- W87204544 hasAuthorship W87204544A5050439206 @default.
- W87204544 hasAuthorship W87204544A5068960578 @default.
- W87204544 hasConcept C113843644 @default.
- W87204544 hasConcept C121332964 @default.
- W87204544 hasConcept C131584629 @default.
- W87204544 hasConcept C137693562 @default.