Matches in SemOpenAlex for { <https://semopenalex.org/work/W873033234> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W873033234 abstract "During vitrification, nucleation of ice crystals occurs most rapidly at low temperatures during later stages of cooling, while actual growth of ice crystals is most rapid at warmer temperatures near the solution melting point. Warming rates required to avoid significant ice growth during recovery from vitrification are therefore larger than the cooling rates required during vitrification, when the sample is relatively un-nucleated. Large samples vitrified by external conduction cooling therefore require more rapid warming by internal means if damaging ice growth and cryoprotectant toxicity are to be avoided. Oscillating electric fields coupling to polar molecules (dielectric heating) and mobile ions (ohmic heating) can achieve this. For uniform warming, the oscillation frequency must be low enough to deposit energy inefficiently into the sample (skin depth > > sample size). However the inefficiency cannot be so low that the electric field strength necessary for a desired warming rate causes dielectric breakdown of the sample or surrounding air (arcing). The wavelength inside and outside the sample must also be much larger than the sample to avoid field nodes and antinodes. For vitrified samples of tens or hundreds of grams (human organs), the skin depth and wavelength constraints are met by frequencies of tens of megahertz. Dielectric absorption as a function of frequency is maximal at the Debye relaxation frequency of dipoles. This frequency increases as viscosity decreases, and is therefore temperature-dependent. It’s desirable to choose a frequency with maximal absorption at the temperature at which the ice growth rate is maximal so that the warming rate is fastest when ice growth is fastest. This also promotes temperature uniformity by slowing warming in sample regions that warm past the temperature of maximal energy absorption. In the vitrification solution M22, the target temperature for maximum warming is approximately −60°. The corresponding frequency appears to be on the order of 30 MHz, which fortuitously also meets the aforementioned skin depth and wavelength constraints. Unlike dielectric heating that has a characteristic temperature of maximum absorption for a given frequency, ohmic heating only increases as temperatures increases, leading to “thermal runaway.” It’s therefore desirable to use a cryoprotectant carrier solution of low ionic strength, such as lactose/mannitol-based LM5. Boundary conditions of electric fields at dielectric interfaces also make sample geometry important for achieving a uniform internal field. Previous work in our laboratory with a 27 MHz 200-watt RF source demonstrated peak warming rates of 160 °C during warming a vitrified 20-mL cylindrical volume of M22 in LM5, and half that rate in a vitrified rabbit kidney in the same volume, with 3 °C and 15 °C maximum internal temperature differences respectively. Greater temperature non-uniformity within the organ vs. plain solution reflects decreased dielectric absorption within the non-polar lipid-rich renal pelvis. The maximum warming rate achievable within organs will likely be determined by such differential energy absorption, and the maximum tolerable temperature non-uniformities that result. Future study requires higher power, larger samples, variable frequency, and detailed measurements of cryoprotected tissue electrical properties as a function of frequency to permit accurate modeling." @default.
- W873033234 created "2016-06-24" @default.
- W873033234 creator A5050892722 @default.
- W873033234 date "2015-08-01" @default.
- W873033234 modified "2023-09-27" @default.
- W873033234 title "44. Considerations for electromagnetic warming of vitrified biomaterials" @default.
- W873033234 doi "https://doi.org/10.1016/j.cryobiol.2015.05.050" @default.
- W873033234 hasPublicationYear "2015" @default.
- W873033234 type Work @default.
- W873033234 sameAs 873033234 @default.
- W873033234 citedByCount "0" @default.
- W873033234 crossrefType "journal-article" @default.
- W873033234 hasAuthorship W873033234A5050892722 @default.
- W873033234 hasConcept C113196181 @default.
- W873033234 hasConcept C120665830 @default.
- W873033234 hasConcept C121332964 @default.
- W873033234 hasConcept C122409099 @default.
- W873033234 hasConcept C125287762 @default.
- W873033234 hasConcept C125388846 @default.
- W873033234 hasConcept C133386390 @default.
- W873033234 hasConcept C159985019 @default.
- W873033234 hasConcept C16685009 @default.
- W873033234 hasConcept C178790620 @default.
- W873033234 hasConcept C185592680 @default.
- W873033234 hasConcept C192562407 @default.
- W873033234 hasConcept C2778022349 @default.
- W873033234 hasConcept C43617362 @default.
- W873033234 hasConcept C49040817 @default.
- W873033234 hasConcept C60799052 @default.
- W873033234 hasConcept C61048295 @default.
- W873033234 hasConcept C62520636 @default.
- W873033234 hasConcept C71924100 @default.
- W873033234 hasConceptScore W873033234C113196181 @default.
- W873033234 hasConceptScore W873033234C120665830 @default.
- W873033234 hasConceptScore W873033234C121332964 @default.
- W873033234 hasConceptScore W873033234C122409099 @default.
- W873033234 hasConceptScore W873033234C125287762 @default.
- W873033234 hasConceptScore W873033234C125388846 @default.
- W873033234 hasConceptScore W873033234C133386390 @default.
- W873033234 hasConceptScore W873033234C159985019 @default.
- W873033234 hasConceptScore W873033234C16685009 @default.
- W873033234 hasConceptScore W873033234C178790620 @default.
- W873033234 hasConceptScore W873033234C185592680 @default.
- W873033234 hasConceptScore W873033234C192562407 @default.
- W873033234 hasConceptScore W873033234C2778022349 @default.
- W873033234 hasConceptScore W873033234C43617362 @default.
- W873033234 hasConceptScore W873033234C49040817 @default.
- W873033234 hasConceptScore W873033234C60799052 @default.
- W873033234 hasConceptScore W873033234C61048295 @default.
- W873033234 hasConceptScore W873033234C62520636 @default.
- W873033234 hasConceptScore W873033234C71924100 @default.
- W873033234 hasLocation W8730332341 @default.
- W873033234 hasOpenAccess W873033234 @default.
- W873033234 hasPrimaryLocation W8730332341 @default.
- W873033234 hasRelatedWork W170598587 @default.
- W873033234 hasRelatedWork W1973156905 @default.
- W873033234 hasRelatedWork W1991775829 @default.
- W873033234 hasRelatedWork W200595446 @default.
- W873033234 hasRelatedWork W2011467800 @default.
- W873033234 hasRelatedWork W2025740813 @default.
- W873033234 hasRelatedWork W2039429379 @default.
- W873033234 hasRelatedWork W2045922026 @default.
- W873033234 hasRelatedWork W2050231707 @default.
- W873033234 hasRelatedWork W2051954508 @default.
- W873033234 hasRelatedWork W2059151783 @default.
- W873033234 hasRelatedWork W2091120880 @default.
- W873033234 hasRelatedWork W2141764105 @default.
- W873033234 hasRelatedWork W2854082155 @default.
- W873033234 hasRelatedWork W2930076769 @default.
- W873033234 hasRelatedWork W347092103 @default.
- W873033234 hasRelatedWork W2022860983 @default.
- W873033234 hasRelatedWork W2831621346 @default.
- W873033234 hasRelatedWork W2854663897 @default.
- W873033234 hasRelatedWork W2868487841 @default.
- W873033234 isParatext "false" @default.
- W873033234 isRetracted "false" @default.
- W873033234 magId "873033234" @default.
- W873033234 workType "article" @default.