Matches in SemOpenAlex for { <https://semopenalex.org/work/W874600112> ?p ?o ?g. }
- W874600112 endingPage "529" @default.
- W874600112 startingPage "518" @default.
- W874600112 abstract "Recent advances have shown the methods based on local structure preserving projections can effectively learn discriminative features. The two attractive approaches for characterizing such data structure are: the classical nearest neighbor strategy for neighborhood structure and the sparse coding algorithm for sparsity structure. Motivated by the intuitive analysis of the relationship between the two structures, in this paper, we take both of them into account and propose two integrated approaches for dimensionality reduction. Concretely, we for achieving improvement directly integrate two available objectives, utilizing neighborhood structure and based on sparsity structure, to construct the combined method, briefly called CSNP. However, such rough strategy often results in its degradation in practice. Instead of the superficial combination, we exploit a hybrid structure by intergrading the two structures and then propose the Sparsity and Neighborhood Preserving Projections, dubbed SNPP, by preserving the hybrid structure into reduced subspace. The resulting optimization problems can be also interpreted as an instance of the general graph embedding framework and can reduce to the generalized eigenvalue decomposition problem. Finally, we conduct extensive experiments on publicly available data sets to verify the efficacy of our algorithms. From the experimental results, we roughly draw the conclusion that neighborhood structure is more important for low-dimensional data while sparsity structure is more useful for high-dimensional data." @default.
- W874600112 created "2016-06-24" @default.
- W874600112 creator A5021610428 @default.
- W874600112 creator A5052639870 @default.
- W874600112 creator A5084568047 @default.
- W874600112 date "2016-01-01" @default.
- W874600112 modified "2023-10-16" @default.
- W874600112 title "Linear dimensionality reduction based on Hybrid structure preserving projections" @default.
- W874600112 cites W1564277727 @default.
- W874600112 cites W1821148229 @default.
- W874600112 cites W1890834058 @default.
- W874600112 cites W1904464160 @default.
- W874600112 cites W1970653278 @default.
- W874600112 cites W1973217014 @default.
- W874600112 cites W1986931325 @default.
- W874600112 cites W1993962865 @default.
- W874600112 cites W1994443280 @default.
- W874600112 cites W2001141328 @default.
- W874600112 cites W2002670936 @default.
- W874600112 cites W2006296645 @default.
- W874600112 cites W2021302824 @default.
- W874600112 cites W2050834445 @default.
- W874600112 cites W2053186076 @default.
- W874600112 cites W2065277358 @default.
- W874600112 cites W2070127246 @default.
- W874600112 cites W2071490777 @default.
- W874600112 cites W2097308346 @default.
- W874600112 cites W2100495367 @default.
- W874600112 cites W2106955188 @default.
- W874600112 cites W2112225422 @default.
- W874600112 cites W2117553576 @default.
- W874600112 cites W2118297240 @default.
- W874600112 cites W2123921160 @default.
- W874600112 cites W2129638195 @default.
- W874600112 cites W2129812935 @default.
- W874600112 cites W2132467081 @default.
- W874600112 cites W2132549764 @default.
- W874600112 cites W2135190479 @default.
- W874600112 cites W2136540140 @default.
- W874600112 cites W2143343993 @default.
- W874600112 cites W2153663612 @default.
- W874600112 cites W2156142937 @default.
- W874600112 cites W2159832601 @default.
- W874600112 cites W2160547390 @default.
- W874600112 cites W2163584563 @default.
- W874600112 cites W2163922914 @default.
- W874600112 cites W2168901348 @default.
- W874600112 cites W3022380717 @default.
- W874600112 cites W3148981562 @default.
- W874600112 cites W4313169793 @default.
- W874600112 doi "https://doi.org/10.1016/j.neucom.2015.07.011" @default.
- W874600112 hasPublicationYear "2016" @default.
- W874600112 type Work @default.
- W874600112 sameAs 874600112 @default.
- W874600112 citedByCount "22" @default.
- W874600112 countsByYear W8746001122015 @default.
- W874600112 countsByYear W8746001122016 @default.
- W874600112 countsByYear W8746001122017 @default.
- W874600112 countsByYear W8746001122018 @default.
- W874600112 countsByYear W8746001122019 @default.
- W874600112 countsByYear W8746001122020 @default.
- W874600112 countsByYear W8746001122021 @default.
- W874600112 countsByYear W8746001122022 @default.
- W874600112 countsByYear W8746001122023 @default.
- W874600112 crossrefType "journal-article" @default.
- W874600112 hasAuthorship W874600112A5021610428 @default.
- W874600112 hasAuthorship W874600112A5052639870 @default.
- W874600112 hasAuthorship W874600112A5084568047 @default.
- W874600112 hasConcept C111030470 @default.
- W874600112 hasConcept C111335779 @default.
- W874600112 hasConcept C11413529 @default.
- W874600112 hasConcept C121332964 @default.
- W874600112 hasConcept C12362212 @default.
- W874600112 hasConcept C132525143 @default.
- W874600112 hasConcept C154945302 @default.
- W874600112 hasConcept C159467904 @default.
- W874600112 hasConcept C162319229 @default.
- W874600112 hasConcept C199360897 @default.
- W874600112 hasConcept C2524010 @default.
- W874600112 hasConcept C2986090443 @default.
- W874600112 hasConcept C32834561 @default.
- W874600112 hasConcept C33923547 @default.
- W874600112 hasConcept C41008148 @default.
- W874600112 hasConcept C41608201 @default.
- W874600112 hasConcept C70518039 @default.
- W874600112 hasConcept C80444323 @default.
- W874600112 hasConcept C97931131 @default.
- W874600112 hasConceptScore W874600112C111030470 @default.
- W874600112 hasConceptScore W874600112C111335779 @default.
- W874600112 hasConceptScore W874600112C11413529 @default.
- W874600112 hasConceptScore W874600112C121332964 @default.
- W874600112 hasConceptScore W874600112C12362212 @default.
- W874600112 hasConceptScore W874600112C132525143 @default.
- W874600112 hasConceptScore W874600112C154945302 @default.
- W874600112 hasConceptScore W874600112C159467904 @default.
- W874600112 hasConceptScore W874600112C162319229 @default.
- W874600112 hasConceptScore W874600112C199360897 @default.
- W874600112 hasConceptScore W874600112C2524010 @default.