Matches in SemOpenAlex for { <https://semopenalex.org/work/W87681906> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W87681906 endingPage "1395" @default.
- W87681906 startingPage "1389" @default.
- W87681906 abstract "Feedforward neural networks (FFNs) are often considered as universal tools and find their applications in areas such as function approximation, pattern recognition, or signal and image processing. One of the main advantages of using FFNs is that they usually do not require, in the learning process, exact mathematical knowledge about input-output dependencies. In other words, they may be regarded as model-free approximators (Hornik, 1989). They learn by minimizing some kind of an error function to fit training data as close as possible. Such learning scheme doesn’t take into account a quality of the training data, so its performance depends strongly on the fact whether the assumption, that the data are reliable and trustable, is hold. This is why when the data are corrupted by the large noise, or when outliers and gross errors appear, the network builds a model that can be very inaccurate. In most real-world cases the assumption that errors are normal and iid, simply doesn’t hold. The data obtained from the environment are very often affected by noise of unknown form or outliers, suspected to be gross errors. The quantity of outliers in routine data ranges from 1 to 10% (Hampel, 1986). They usually appear in data sets during obtaining the information and pre-processing them when, for instance, measurement errors, long-tailed noise, or results of human mistakes may occur. Intuitively we can define an outlier as an observation that significantly deviates from the bulk of data. Nevertheless, this definition doesn’t help in classifying an outlier as a gross error or a meaningful and important observation. To deal with the problem of outliers a separate branch of statistics, called robust statistics (Hampel, 1986, Huber, 1981), was developed. Robust statistical methods are designed to act well when the true underlying model deviates from the assumed parametric model. Ideally, they should be efficient and reliable for the observations that are very close to the assumed model and simultaneously for the observations containing larger deviations and outliers. The other way is to detect and remove outliers before the beginning of the model building process. Such methods are more universal but they do not take into account the specific type of modeling philosophy (e.g. modeling by the FFNs). In this article we propose new robust FFNs learning algorithm based on the least trimmed squares estimator." @default.
- W87681906 created "2016-06-24" @default.
- W87681906 creator A5073125809 @default.
- W87681906 date "2011-05-24" @default.
- W87681906 modified "2023-09-25" @default.
- W87681906 title "Robust Learning Algorithm with LTS Error Function" @default.
- W87681906 cites W1964524778 @default.
- W87681906 cites W2020647418 @default.
- W87681906 cites W2033245860 @default.
- W87681906 cites W2043698172 @default.
- W87681906 cites W2137983211 @default.
- W87681906 cites W2141547648 @default.
- W87681906 cites W2152701363 @default.
- W87681906 cites W2153845355 @default.
- W87681906 cites W2160208155 @default.
- W87681906 doi "https://doi.org/10.4018/978-1-59904-849-9.ch204" @default.
- W87681906 hasPublicationYear "2011" @default.
- W87681906 type Work @default.
- W87681906 sameAs 87681906 @default.
- W87681906 citedByCount "0" @default.
- W87681906 crossrefType "book-chapter" @default.
- W87681906 hasAuthorship W87681906A5073125809 @default.
- W87681906 hasConcept C11413529 @default.
- W87681906 hasConcept C14036430 @default.
- W87681906 hasConcept C154945302 @default.
- W87681906 hasConcept C41008148 @default.
- W87681906 hasConcept C78458016 @default.
- W87681906 hasConcept C86803240 @default.
- W87681906 hasConceptScore W87681906C11413529 @default.
- W87681906 hasConceptScore W87681906C14036430 @default.
- W87681906 hasConceptScore W87681906C154945302 @default.
- W87681906 hasConceptScore W87681906C41008148 @default.
- W87681906 hasConceptScore W87681906C78458016 @default.
- W87681906 hasConceptScore W87681906C86803240 @default.
- W87681906 hasLocation W876819061 @default.
- W87681906 hasOpenAccess W87681906 @default.
- W87681906 hasPrimaryLocation W876819061 @default.
- W87681906 hasRelatedWork W1493136357 @default.
- W87681906 hasRelatedWork W1570540360 @default.
- W87681906 hasRelatedWork W1983797458 @default.
- W87681906 hasRelatedWork W1993052783 @default.
- W87681906 hasRelatedWork W2027821566 @default.
- W87681906 hasRelatedWork W2059838646 @default.
- W87681906 hasRelatedWork W2108933033 @default.
- W87681906 hasRelatedWork W2110301375 @default.
- W87681906 hasRelatedWork W2130441379 @default.
- W87681906 hasRelatedWork W2141547648 @default.
- W87681906 hasRelatedWork W2162924979 @default.
- W87681906 hasRelatedWork W2186961669 @default.
- W87681906 hasRelatedWork W2322706266 @default.
- W87681906 hasRelatedWork W2792251271 @default.
- W87681906 hasRelatedWork W2804522032 @default.
- W87681906 hasRelatedWork W2949941598 @default.
- W87681906 hasRelatedWork W3005240719 @default.
- W87681906 hasRelatedWork W3119739895 @default.
- W87681906 hasRelatedWork W3133252287 @default.
- W87681906 hasRelatedWork W3193733988 @default.
- W87681906 isParatext "false" @default.
- W87681906 isRetracted "false" @default.
- W87681906 magId "87681906" @default.
- W87681906 workType "book-chapter" @default.