Matches in SemOpenAlex for { <https://semopenalex.org/work/W877573188> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W877573188 abstract "The thesis falls naturally into two parts, in the first of which (comprising Chapter 1) there is laid down a set-theoretic foundation for constructive mathematics as understood by Errett Bishop and his followers. The work of this part closely follows the lines of the corresponding classical development of set theory by Anthony Morse, highlights several classical definitions and results which are inadequate for a proper description of constructive mathematics, and develops constructive replacements for these where possible; of particular importance is the constructive proof of a general recursion theorem, from which the familiar theorems of simple and primitive recursion readily follow. The second part of the thesis (Chapters 2–5) is concerned with various problems of constructive analysis, the link between these problems being their involvement with compactness or local compactness at some stage. Chapter 2 serves as an introduction to this analysis, and includes the definition of metric injectiveness and the proof of a constructive substitute for the classical result that a continuous injection of a compact Hausdorff space onto a Hausdorff space has continuous inverse. In Chapter 3 we give an improved definition of one-point compactification of a locally compact space, and then develop the theory of existence and essential uniqueness of such compactifications of a given space. In turn, this is applied in Chapter 4, which deals in full with the space of continuous, complex-valued functions which vanish at infinity on a locally compact space, and with star homomorphisms between such spaces; interpolated within the main body of this chapter is the vital Backward Uniform Continuity Theorem, which leads to a discussion of possible constructive substitutes for the classical Uniform Continuity Theorem. The final chapter deals with constructive substitutes for various topologies associated with spaces of bounded linear mappings between normed linear spaces. The main results of this chapter concern the weak operator topology on the space Hom( H , H ) of bounded linear operators on a Hilbert space H , and include a constructive proof of the weak operator precompactness of the unit ball of Hom( H , H ), and a proof that the compactness of this ball is an essentially non-constructive proposition. The chapter ends with a discussion of linear functionals and the weak operator topology on Hom( H , H ), and a partial substitute for the classical characterisa- of ultraweakly continuous linear functionals on a linear subset of Hom( H , H ). In addition, there are five appendices, three of which develop material arising from that in the main body of the thesis. In the first of these three, we describe an axiomatic theory of proofs within the formal system of Chapter 1, and derive (amongst other results) a very satisfactory characterisation of proofs of ' p → q '; the second deals with connectedness, and builds up to a constructive proof that a closed ball in finite dimensional Banach space is connected; finally, the last makes a remark on metric injectiveness in the light of a conjecture in Chapter 2." @default.
- W877573188 created "2016-06-24" @default.
- W877573188 creator A5017686064 @default.
- W877573188 date "1974-01-01" @default.
- W877573188 modified "2023-09-27" @default.
- W877573188 title "Constructive mathematics - its set theory and practice" @default.
- W877573188 hasPublicationYear "1974" @default.
- W877573188 type Work @default.
- W877573188 sameAs 877573188 @default.
- W877573188 citedByCount "1" @default.
- W877573188 crossrefType "dissertation" @default.
- W877573188 hasAuthorship W877573188A5017686064 @default.
- W877573188 hasConcept C111919701 @default.
- W877573188 hasConcept C11413529 @default.
- W877573188 hasConcept C118615104 @default.
- W877573188 hasConcept C136119220 @default.
- W877573188 hasConcept C168773036 @default.
- W877573188 hasConcept C18648836 @default.
- W877573188 hasConcept C191399826 @default.
- W877573188 hasConcept C198043062 @default.
- W877573188 hasConcept C199343813 @default.
- W877573188 hasConcept C202444582 @default.
- W877573188 hasConcept C202854965 @default.
- W877573188 hasConcept C2777686260 @default.
- W877573188 hasConcept C2778701210 @default.
- W877573188 hasConcept C31498916 @default.
- W877573188 hasConcept C33923547 @default.
- W877573188 hasConcept C41008148 @default.
- W877573188 hasConcept C71924100 @default.
- W877573188 hasConcept C98045186 @default.
- W877573188 hasConceptScore W877573188C111919701 @default.
- W877573188 hasConceptScore W877573188C11413529 @default.
- W877573188 hasConceptScore W877573188C118615104 @default.
- W877573188 hasConceptScore W877573188C136119220 @default.
- W877573188 hasConceptScore W877573188C168773036 @default.
- W877573188 hasConceptScore W877573188C18648836 @default.
- W877573188 hasConceptScore W877573188C191399826 @default.
- W877573188 hasConceptScore W877573188C198043062 @default.
- W877573188 hasConceptScore W877573188C199343813 @default.
- W877573188 hasConceptScore W877573188C202444582 @default.
- W877573188 hasConceptScore W877573188C202854965 @default.
- W877573188 hasConceptScore W877573188C2777686260 @default.
- W877573188 hasConceptScore W877573188C2778701210 @default.
- W877573188 hasConceptScore W877573188C31498916 @default.
- W877573188 hasConceptScore W877573188C33923547 @default.
- W877573188 hasConceptScore W877573188C41008148 @default.
- W877573188 hasConceptScore W877573188C71924100 @default.
- W877573188 hasConceptScore W877573188C98045186 @default.
- W877573188 hasLocation W8775731881 @default.
- W877573188 hasOpenAccess W877573188 @default.
- W877573188 hasPrimaryLocation W8775731881 @default.
- W877573188 hasRelatedWork W134553501 @default.
- W877573188 hasRelatedWork W1537034681 @default.
- W877573188 hasRelatedWork W1844232289 @default.
- W877573188 hasRelatedWork W2011347541 @default.
- W877573188 hasRelatedWork W2028791022 @default.
- W877573188 hasRelatedWork W2054933376 @default.
- W877573188 hasRelatedWork W2167456969 @default.
- W877573188 hasRelatedWork W2249836621 @default.
- W877573188 hasRelatedWork W2481197352 @default.
- W877573188 hasRelatedWork W2487147402 @default.
- W877573188 hasRelatedWork W2495256958 @default.
- W877573188 hasRelatedWork W2763722299 @default.
- W877573188 hasRelatedWork W2962775769 @default.
- W877573188 hasRelatedWork W3000070000 @default.
- W877573188 hasRelatedWork W3022510831 @default.
- W877573188 hasRelatedWork W31620012 @default.
- W877573188 hasRelatedWork W353061446 @default.
- W877573188 hasRelatedWork W617439666 @default.
- W877573188 hasRelatedWork W636294148 @default.
- W877573188 hasRelatedWork W80499793 @default.
- W877573188 isParatext "false" @default.
- W877573188 isRetracted "false" @default.
- W877573188 magId "877573188" @default.
- W877573188 workType "dissertation" @default.