Matches in SemOpenAlex for { <https://semopenalex.org/work/W87879423> ?p ?o ?g. }
- W87879423 abstract "A core problem in data mining is to retrieve data in an easy and human friendly way. Automatically translating natural language questions into SQL queries would allow for the design of effective and useful database systems from a user viewpoint.In this thesis, we approach such problem by carrying out a mapping between natural language (NL) and SQL syntactic structures. The mapping is automatically derived by applying machine learning algorithms. In particular, we generate a dataset of pairs of NL questions and SQL queries represented by means of their syntactic trees automatically derived by their respective syntactic parsers. Then, we train a classifier for detecting correct and incorrect pairs of questions and queries using kernel methods along with Support Vector Machines. Experimental results on two different datasets show that our approach is viable to select the correct SQL query for a given natural language questions in two target domains.Given that preliminary results were encouraging we implemented an SQL query generator that creates the set of candidate SQL queries which we rerank with a SVM-ranker based on tree kernels.In particular we exploit linguistic dependencies in the natural language question and the database metadata to build a set of plausible SELECT, WHERE and FROM clauses enriched with meaningful joins. Then, we combine all the clauses to get the set of all possible SQL queries, producing candidate queries to answer the question. This approach can be recursively applied to deal with complex questions, requiring nested sub-queries.We sort the candidates in terms of scores of correctness using a weighting scheme applied to the query generation rules.Then, we use a SVM ranker trained with structural kernels to reorder the list of question and query pairs, where both members are again represented as syntactic trees. The f-measure of our model on standard benchmarks is in line with the best models (85% on the first question), which use external and expensive hand-crafted resources such as the semantic interpretation. Moreover, we can provide a set of candidate answers with a Recall of the answer of about 92% and 96% on the first 2 and 5 candidates, respectively.}" @default.
- W87879423 created "2016-06-24" @default.
- W87879423 creator A5078141722 @default.
- W87879423 date "2012-10-05" @default.
- W87879423 modified "2023-09-27" @default.
- W87879423 title "Structural Mapping between Natural Language Questions and SQL Queries" @default.
- W87879423 cites W11155487 @default.
- W87879423 cites W1496189301 @default.
- W87879423 cites W1501845305 @default.
- W87879423 cites W1508977358 @default.
- W87879423 cites W1510073064 @default.
- W87879423 cites W1535015163 @default.
- W87879423 cites W1539585011 @default.
- W87879423 cites W1559723967 @default.
- W87879423 cites W1564118895 @default.
- W87879423 cites W1572180878 @default.
- W87879423 cites W1576520375 @default.
- W87879423 cites W1587871245 @default.
- W87879423 cites W159451820 @default.
- W87879423 cites W1968447186 @default.
- W87879423 cites W2005814556 @default.
- W87879423 cites W2009082462 @default.
- W87879423 cites W2050751769 @default.
- W87879423 cites W2061141062 @default.
- W87879423 cites W2079372196 @default.
- W87879423 cites W2081580037 @default.
- W87879423 cites W2086004682 @default.
- W87879423 cites W2091582906 @default.
- W87879423 cites W2096979215 @default.
- W87879423 cites W2102258316 @default.
- W87879423 cites W2107425660 @default.
- W87879423 cites W2110433488 @default.
- W87879423 cites W2112706073 @default.
- W87879423 cites W2120814856 @default.
- W87879423 cites W2121350579 @default.
- W87879423 cites W2121465811 @default.
- W87879423 cites W2124225821 @default.
- W87879423 cites W2129554061 @default.
- W87879423 cites W2135754437 @default.
- W87879423 cites W2140266767 @default.
- W87879423 cites W2149346550 @default.
- W87879423 cites W2150406842 @default.
- W87879423 cites W2154268919 @default.
- W87879423 cites W2157063199 @default.
- W87879423 cites W2159859968 @default.
- W87879423 cites W2161002933 @default.
- W87879423 cites W2163234897 @default.
- W87879423 cites W2165150232 @default.
- W87879423 cites W2167258615 @default.
- W87879423 cites W223489770 @default.
- W87879423 cites W236219671 @default.
- W87879423 cites W2400348987 @default.
- W87879423 cites W2927156331 @default.
- W87879423 cites W2477829187 @default.
- W87879423 hasPublicationYear "2012" @default.
- W87879423 type Work @default.
- W87879423 sameAs 87879423 @default.
- W87879423 citedByCount "0" @default.
- W87879423 crossrefType "dissertation" @default.
- W87879423 hasAuthorship W87879423A5078141722 @default.
- W87879423 hasConcept C154945302 @default.
- W87879423 hasConcept C164120249 @default.
- W87879423 hasConcept C172722865 @default.
- W87879423 hasConcept C177264268 @default.
- W87879423 hasConcept C186644900 @default.
- W87879423 hasConcept C192028432 @default.
- W87879423 hasConcept C192939062 @default.
- W87879423 hasConcept C194222762 @default.
- W87879423 hasConcept C195324797 @default.
- W87879423 hasConcept C199360897 @default.
- W87879423 hasConcept C204321447 @default.
- W87879423 hasConcept C23123220 @default.
- W87879423 hasConcept C2778692605 @default.
- W87879423 hasConcept C41008148 @default.
- W87879423 hasConcept C510870499 @default.
- W87879423 hasConcept C55596503 @default.
- W87879423 hasConcept C77088390 @default.
- W87879423 hasConcept C97854310 @default.
- W87879423 hasConceptScore W87879423C154945302 @default.
- W87879423 hasConceptScore W87879423C164120249 @default.
- W87879423 hasConceptScore W87879423C172722865 @default.
- W87879423 hasConceptScore W87879423C177264268 @default.
- W87879423 hasConceptScore W87879423C186644900 @default.
- W87879423 hasConceptScore W87879423C192028432 @default.
- W87879423 hasConceptScore W87879423C192939062 @default.
- W87879423 hasConceptScore W87879423C194222762 @default.
- W87879423 hasConceptScore W87879423C195324797 @default.
- W87879423 hasConceptScore W87879423C199360897 @default.
- W87879423 hasConceptScore W87879423C204321447 @default.
- W87879423 hasConceptScore W87879423C23123220 @default.
- W87879423 hasConceptScore W87879423C2778692605 @default.
- W87879423 hasConceptScore W87879423C41008148 @default.
- W87879423 hasConceptScore W87879423C510870499 @default.
- W87879423 hasConceptScore W87879423C55596503 @default.
- W87879423 hasConceptScore W87879423C77088390 @default.
- W87879423 hasConceptScore W87879423C97854310 @default.
- W87879423 hasLocation W878794231 @default.
- W87879423 hasOpenAccess W87879423 @default.
- W87879423 hasPrimaryLocation W878794231 @default.
- W87879423 hasRelatedWork W1453946243 @default.