Matches in SemOpenAlex for { <https://semopenalex.org/work/W87951128> ?p ?o ?g. }
- W87951128 endingPage "70" @default.
- W87951128 startingPage "70" @default.
- W87951128 abstract "This paper presents a simulation study of the use of an artificial neural network (ANN) model for control and optimization of a Fluidized-Bed Catalytic Cracking reactor-regenerator system (FCC). This case study, whose phenomenological model was validated with industrial data, is a multivariable and nonlinear process with strong interactions among the operational variables. In order to obtain a dynamic model of the FCC system, a feedforward ANN model was identified. Genetic Algorithm (GA), and Particle Swarm Optimization (PSO) evolutionary methods were used to set optimal operating conditions for the FCC, and both algorithms presented good and consistent results for typical FCC optimization problems. The neural model was also used in the design of a Model-Based Predictive Control (MPC) for the FCC process. It was showed that the ANN-based MPC was able to reject the imposed disturbance as well as to track the proposed trajectory, while considering operational constraints of the plant." @default.
- W87951128 created "2016-06-24" @default.
- W87951128 creator A5051728225 @default.
- W87951128 creator A5063991259 @default.
- W87951128 creator A5081112077 @default.
- W87951128 date "2013-07-21" @default.
- W87951128 modified "2023-10-03" @default.
- W87951128 title "MODELING, OPTIMIZATION AND CONTROL OF A FCC UNIT USING NEURAL NETWORKS AND EVOLUTIONARY METHODS" @default.
- W87951128 cites W1492160417 @default.
- W87951128 cites W1508419498 @default.
- W87951128 cites W1575223513 @default.
- W87951128 cites W1583479171 @default.
- W87951128 cites W1975292844 @default.
- W87951128 cites W1983045703 @default.
- W87951128 cites W1991557096 @default.
- W87951128 cites W1992488543 @default.
- W87951128 cites W2000133914 @default.
- W87951128 cites W2002387781 @default.
- W87951128 cites W2006909465 @default.
- W87951128 cites W2014338349 @default.
- W87951128 cites W2016409985 @default.
- W87951128 cites W2016436464 @default.
- W87951128 cites W2018855922 @default.
- W87951128 cites W2020730012 @default.
- W87951128 cites W2027928471 @default.
- W87951128 cites W2033519565 @default.
- W87951128 cites W2039669503 @default.
- W87951128 cites W2043973254 @default.
- W87951128 cites W2047094503 @default.
- W87951128 cites W2049211407 @default.
- W87951128 cites W2061203939 @default.
- W87951128 cites W2068614448 @default.
- W87951128 cites W2080013196 @default.
- W87951128 cites W2081418705 @default.
- W87951128 cites W2103496339 @default.
- W87951128 cites W2132267451 @default.
- W87951128 cites W2144519176 @default.
- W87951128 cites W2235137371 @default.
- W87951128 cites W2279527887 @default.
- W87951128 cites W2320438893 @default.
- W87951128 cites W2543580944 @default.
- W87951128 cites W2622737351 @default.
- W87951128 cites W2996739384 @default.
- W87951128 cites W3146803896 @default.
- W87951128 cites W404990318 @default.
- W87951128 cites W141235881 @default.
- W87951128 doi "https://doi.org/10.22409/engevista.v16i1.468" @default.
- W87951128 hasPublicationYear "2013" @default.
- W87951128 type Work @default.
- W87951128 sameAs 87951128 @default.
- W87951128 citedByCount "5" @default.
- W87951128 countsByYear W879511282015 @default.
- W87951128 countsByYear W879511282016 @default.
- W87951128 countsByYear W879511282017 @default.
- W87951128 countsByYear W879511282018 @default.
- W87951128 crossrefType "journal-article" @default.
- W87951128 hasAuthorship W87951128A5051728225 @default.
- W87951128 hasAuthorship W87951128A5063991259 @default.
- W87951128 hasAuthorship W87951128A5081112077 @default.
- W87951128 hasBestOaLocation W879511281 @default.
- W87951128 hasConcept C111919701 @default.
- W87951128 hasConcept C11413529 @default.
- W87951128 hasConcept C117312493 @default.
- W87951128 hasConcept C119857082 @default.
- W87951128 hasConcept C121332964 @default.
- W87951128 hasConcept C126255220 @default.
- W87951128 hasConcept C127413603 @default.
- W87951128 hasConcept C133731056 @default.
- W87951128 hasConcept C154945302 @default.
- W87951128 hasConcept C158622935 @default.
- W87951128 hasConcept C159149176 @default.
- W87951128 hasConcept C159985019 @default.
- W87951128 hasConcept C172205157 @default.
- W87951128 hasConcept C192562407 @default.
- W87951128 hasConcept C2775924081 @default.
- W87951128 hasConcept C31052017 @default.
- W87951128 hasConcept C33923547 @default.
- W87951128 hasConcept C41008148 @default.
- W87951128 hasConcept C47446073 @default.
- W87951128 hasConcept C47702885 @default.
- W87951128 hasConcept C50644808 @default.
- W87951128 hasConcept C58396970 @default.
- W87951128 hasConcept C62520636 @default.
- W87951128 hasConcept C85617194 @default.
- W87951128 hasConcept C8880873 @default.
- W87951128 hasConcept C98045186 @default.
- W87951128 hasConceptScore W87951128C111919701 @default.
- W87951128 hasConceptScore W87951128C11413529 @default.
- W87951128 hasConceptScore W87951128C117312493 @default.
- W87951128 hasConceptScore W87951128C119857082 @default.
- W87951128 hasConceptScore W87951128C121332964 @default.
- W87951128 hasConceptScore W87951128C126255220 @default.
- W87951128 hasConceptScore W87951128C127413603 @default.
- W87951128 hasConceptScore W87951128C133731056 @default.
- W87951128 hasConceptScore W87951128C154945302 @default.
- W87951128 hasConceptScore W87951128C158622935 @default.
- W87951128 hasConceptScore W87951128C159149176 @default.
- W87951128 hasConceptScore W87951128C159985019 @default.