Matches in SemOpenAlex for { <https://semopenalex.org/work/W879718306> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W879718306 abstract "The use of ACT-R to develop an attention model for simple driving tasks Kerstin Sophie Haring (ksharing@fennel.rcast.u-tokyo.ac.jp) Katsumi Watanabe (kw@fennel.rcast.u-tokyo.ac.jp) Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1, Komaba, Meguro-ku, Tokyo, 153-8904, Japan Marco Ragni (ragni@cognition.uni-freiburg.de) Lars Konieczny (lars@cognition.uni-freiburg.de) Center for Cognitive Science, University of Freiburg Friedrichstr. 50, 79098 Freiburg, Germany of these highly complex tasks. Vice versa, it also can provide an indication for the future development of a cognitive architecture by showing what cannot be realized yet. Abstract Driving a car is obviously a complex task and the construction of an ACT-R model of human attention while performing this task is similarly complex along multiple dimensions and presents a challenge to architecture and modeler. This work is a first attempt to develop an integrated driver model of attention in the cognitive architecture ACT-R. The model is able to keep a traffic lane, identifies traffic signs and crossroads in a sparse, simulated environment. Keywords: Driver behavior model; cognitive architecture; ACT-R; Attention Introduction Fig. 2: Screenshot of the environment interaction with ACT-R. The red circle indicates the current visual focus of attention of the model. For most of us, driving a car is one of our everyday tasks. But even for experienced drivers, just the task itself it is a cognitive challenging task involving a big range of human senses like sight, hearing, touch and acceleration. And this is not yet considering secondary tasks like talking on the phone or visual distractions like city illuminations. Luckily, most driving task are not as challenging as the Traffic Light Tree in Fig. 1, an artificial scenario by the French sculptor Pierre Vivant. The simulation environment for this model was restricted to the components the cognitive architecture can recognize. Nevertheless, basic driving scenarios simulating human visual attention and driver behavior could be implemented. The screenshot form the driving environment, which was separately implemented in Lisp for this work, shows from top-down another (blue) vehicle, the focus of attention (red circle) and the navigation point (N) to keep the vehicle in the center of the road. This model focuses on basic reference points like the horizon, a leading car, the border and the center line of the road, crossroads and traffic signs. For example, the model of a driver in the screenshot in Fig. 2 sets the focus of visual attention on the outer border of the road which enables it to reevaluate the center for the N point. In the next step, it will shift the focus of attention to the front and (hopefully) detect the car in front. If so, possible next steps could be the comparison of the distance to a (here fixed) safety distance or an overtaking procedure. The here presented cognitive model should simulates through ACT-R human attention while driving in a simplified environment and produces the behavior for scenarios with other cars, crossroads and traffic signs. Fig. 1: The (thankfully not on a crossroad) installed traffic light sculpture by Pierre Vivant. The cognitive architecture Current attempts to model human attention while driving a car are realized in a quite more simple environment, yet they are quite an important first step towards the modeling The ACT-R (Anderson, 1993; Anderson 2007) cognitive architecture proposes artificial, computational processes that aim to act like a human cognitive system. Most of its basic" @default.
- W879718306 created "2016-06-24" @default.
- W879718306 creator A5008622317 @default.
- W879718306 creator A5018741062 @default.
- W879718306 creator A5036432253 @default.
- W879718306 creator A5050738347 @default.
- W879718306 date "2012-01-01" @default.
- W879718306 modified "2023-09-25" @default.
- W879718306 title "The use of ACT-R to develop an attention model for simple driving tasks" @default.
- W879718306 cites W1679907412 @default.
- W879718306 cites W1969727417 @default.
- W879718306 cites W206062985 @default.
- W879718306 cites W2072970982 @default.
- W879718306 cites W2077012593 @default.
- W879718306 cites W2092366055 @default.
- W879718306 cites W2099667445 @default.
- W879718306 cites W2135293892 @default.
- W879718306 cites W2155732138 @default.
- W879718306 cites W2160951757 @default.
- W879718306 hasPublicationYear "2012" @default.
- W879718306 type Work @default.
- W879718306 sameAs 879718306 @default.
- W879718306 citedByCount "0" @default.
- W879718306 crossrefType "journal-article" @default.
- W879718306 hasAuthorship W879718306A5008622317 @default.
- W879718306 hasAuthorship W879718306A5018741062 @default.
- W879718306 hasAuthorship W879718306A5036432253 @default.
- W879718306 hasAuthorship W879718306A5050738347 @default.
- W879718306 hasConcept C123657996 @default.
- W879718306 hasConcept C127413603 @default.
- W879718306 hasConcept C142362112 @default.
- W879718306 hasConcept C153349607 @default.
- W879718306 hasConcept C15744967 @default.
- W879718306 hasConcept C161407221 @default.
- W879718306 hasConcept C169760540 @default.
- W879718306 hasConcept C169900460 @default.
- W879718306 hasConcept C180747234 @default.
- W879718306 hasConcept C188147891 @default.
- W879718306 hasConcept C201995342 @default.
- W879718306 hasConcept C20854674 @default.
- W879718306 hasConcept C2780451532 @default.
- W879718306 hasConcept C41008148 @default.
- W879718306 hasConceptScore W879718306C123657996 @default.
- W879718306 hasConceptScore W879718306C127413603 @default.
- W879718306 hasConceptScore W879718306C142362112 @default.
- W879718306 hasConceptScore W879718306C153349607 @default.
- W879718306 hasConceptScore W879718306C15744967 @default.
- W879718306 hasConceptScore W879718306C161407221 @default.
- W879718306 hasConceptScore W879718306C169760540 @default.
- W879718306 hasConceptScore W879718306C169900460 @default.
- W879718306 hasConceptScore W879718306C180747234 @default.
- W879718306 hasConceptScore W879718306C188147891 @default.
- W879718306 hasConceptScore W879718306C201995342 @default.
- W879718306 hasConceptScore W879718306C20854674 @default.
- W879718306 hasConceptScore W879718306C2780451532 @default.
- W879718306 hasConceptScore W879718306C41008148 @default.
- W879718306 hasIssue "34" @default.
- W879718306 hasLocation W8797183061 @default.
- W879718306 hasOpenAccess W879718306 @default.
- W879718306 hasPrimaryLocation W8797183061 @default.
- W879718306 hasRelatedWork W181466983 @default.
- W879718306 hasRelatedWork W1871644411 @default.
- W879718306 hasRelatedWork W2004109622 @default.
- W879718306 hasRelatedWork W2012750534 @default.
- W879718306 hasRelatedWork W2027141107 @default.
- W879718306 hasRelatedWork W2040673088 @default.
- W879718306 hasRelatedWork W2078614463 @default.
- W879718306 hasRelatedWork W2115846808 @default.
- W879718306 hasRelatedWork W2117196642 @default.
- W879718306 hasRelatedWork W2118482668 @default.
- W879718306 hasRelatedWork W2137005201 @default.
- W879718306 hasRelatedWork W2170402122 @default.
- W879718306 hasRelatedWork W2267849 @default.
- W879718306 hasRelatedWork W2276495702 @default.
- W879718306 hasRelatedWork W2331672067 @default.
- W879718306 hasRelatedWork W2482402724 @default.
- W879718306 hasRelatedWork W2800623548 @default.
- W879718306 hasRelatedWork W3200701002 @default.
- W879718306 hasRelatedWork W86393979 @default.
- W879718306 hasRelatedWork W1839075649 @default.
- W879718306 hasVolume "34" @default.
- W879718306 isParatext "false" @default.
- W879718306 isRetracted "false" @default.
- W879718306 magId "879718306" @default.
- W879718306 workType "article" @default.