Matches in SemOpenAlex for { <https://semopenalex.org/work/W879905685> ?p ?o ?g. }
- W879905685 endingPage "1111" @default.
- W879905685 startingPage "1043" @default.
- W879905685 abstract "We consider the wave and Schrödinger equations on a bounded open connected subset $Omega$ of a Riemannian manifold, with Dirichlet, Neumann or Robin boundary conditions whenever its boundary is nonempty. We observe the restriction of the solutions to a measurable subset $omega$ of $Omega$ during a time interval $[0, T]$ with $T>0$. It is well known that, if the pair $(omega,T)$ satisfies the Geometric Control Condition ($omega$ being an open set), then an observability inequality holds guaranteeing that the total energy of solutions can be estimated in terms of the energy localized in $omega times (0, T)$. We address the problem of the optimal location of the observation subset $omega$ among all possible subsets of a given measure or volume fraction. A priori this problem can be modeled in terms of maximizing the observability constant, but from the practical point of view it appears more relevant to model it in terms of maximizing an average either over random initial data or over large time. This leads us to define a new notion of observability constant, either randomized, or asymptotic in time. In both cases we come up with a spectral functional that can be viewed as a measure of eigenfunction concentration. Roughly speaking, the subset $omega$ has to be chosen so to maximize the minimal trace of the squares of all eigenfunctions. Considering the convexified formulation of the problem, we prove a no-gap result between the initial problem and its convexified version, under appropriate quantum ergodicity assumptions, and compute the optimal value. Our results reveal intimate relations between shape and domain optimization, and the theory of quantum chaos (more precisely, quantum ergodicity properties of the domain $Omega$). We prove that in 1D a classical optimal set exists only for exceptional values of the volume fraction, and in general one expects relaxation to occur and therefore classical optimal sets not to exist. We then provide spectral approximations and present some numerical simulations that fully confirm the theoretical results in the paper and support our conjectures. Finally, we provide several remedies to nonexistence of an optimal domain. We prove that when the spectral criterion is modified to consider a weighted one in which the high frequency components are penalized, the problem has then a unique classical solution determined by a finite number of low frequency modes. In particular the maximizing sequence built from spectral approximations is stationary." @default.
- W879905685 created "2016-06-24" @default.
- W879905685 creator A5049691168 @default.
- W879905685 creator A5088702266 @default.
- W879905685 creator A5089339704 @default.
- W879905685 date "2016-01-01" @default.
- W879905685 modified "2023-10-06" @default.
- W879905685 title "Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains" @default.
- W879905685 cites W102428431 @default.
- W879905685 cites W106485379 @default.
- W879905685 cites W1514431383 @default.
- W879905685 cites W1532154335 @default.
- W879905685 cites W1633481666 @default.
- W879905685 cites W1670678350 @default.
- W879905685 cites W1963646571 @default.
- W879905685 cites W1970963843 @default.
- W879905685 cites W1978683706 @default.
- W879905685 cites W1982957487 @default.
- W879905685 cites W1985077192 @default.
- W879905685 cites W1992081887 @default.
- W879905685 cites W1993488772 @default.
- W879905685 cites W1993506662 @default.
- W879905685 cites W2003942623 @default.
- W879905685 cites W2005925413 @default.
- W879905685 cites W2006681194 @default.
- W879905685 cites W2007371871 @default.
- W879905685 cites W2008103464 @default.
- W879905685 cites W2021432942 @default.
- W879905685 cites W2035481788 @default.
- W879905685 cites W2036202965 @default.
- W879905685 cites W2038745889 @default.
- W879905685 cites W2047389283 @default.
- W879905685 cites W2059059474 @default.
- W879905685 cites W2059300827 @default.
- W879905685 cites W2059624421 @default.
- W879905685 cites W2066041466 @default.
- W879905685 cites W2076278340 @default.
- W879905685 cites W2076626169 @default.
- W879905685 cites W2079600388 @default.
- W879905685 cites W2080373877 @default.
- W879905685 cites W2090405086 @default.
- W879905685 cites W2094042551 @default.
- W879905685 cites W2094882580 @default.
- W879905685 cites W2094902084 @default.
- W879905685 cites W2110933932 @default.
- W879905685 cites W2120922378 @default.
- W879905685 cites W2123871098 @default.
- W879905685 cites W2143634653 @default.
- W879905685 cites W2151053090 @default.
- W879905685 cites W2155912704 @default.
- W879905685 cites W2168714882 @default.
- W879905685 cites W2169998011 @default.
- W879905685 cites W2224408134 @default.
- W879905685 cites W2265951591 @default.
- W879905685 cites W2316822118 @default.
- W879905685 cites W2397910332 @default.
- W879905685 cites W2507137996 @default.
- W879905685 cites W2598239392 @default.
- W879905685 cites W2739828033 @default.
- W879905685 cites W2962859170 @default.
- W879905685 cites W2962870430 @default.
- W879905685 cites W2963607086 @default.
- W879905685 cites W2963791225 @default.
- W879905685 cites W2964068828 @default.
- W879905685 cites W2964251094 @default.
- W879905685 cites W3022643721 @default.
- W879905685 cites W3099862992 @default.
- W879905685 cites W3121630123 @default.
- W879905685 cites W73472638 @default.
- W879905685 cites W2277315623 @default.
- W879905685 doi "https://doi.org/10.4171/jems/608" @default.
- W879905685 hasPublicationYear "2016" @default.
- W879905685 type Work @default.
- W879905685 sameAs 879905685 @default.
- W879905685 citedByCount "32" @default.
- W879905685 countsByYear W8799056852014 @default.
- W879905685 countsByYear W8799056852015 @default.
- W879905685 countsByYear W8799056852016 @default.
- W879905685 countsByYear W8799056852017 @default.
- W879905685 countsByYear W8799056852018 @default.
- W879905685 countsByYear W8799056852019 @default.
- W879905685 countsByYear W8799056852020 @default.
- W879905685 countsByYear W8799056852021 @default.
- W879905685 countsByYear W8799056852022 @default.
- W879905685 countsByYear W8799056852023 @default.
- W879905685 crossrefType "journal-article" @default.
- W879905685 hasAuthorship W879905685A5049691168 @default.
- W879905685 hasAuthorship W879905685A5088702266 @default.
- W879905685 hasAuthorship W879905685A5089339704 @default.
- W879905685 hasBestOaLocation W8799056852 @default.
- W879905685 hasConcept C114614502 @default.
- W879905685 hasConcept C118615104 @default.
- W879905685 hasConcept C121332964 @default.
- W879905685 hasConcept C122044880 @default.
- W879905685 hasConcept C128803854 @default.
- W879905685 hasConcept C134306372 @default.
- W879905685 hasConcept C158693339 @default.
- W879905685 hasConcept C2779557605 @default.