Matches in SemOpenAlex for { <https://semopenalex.org/work/W88152185> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W88152185 abstract "In this thesis, methods to determine the static postbuckling behaviour of elastic structures undergoing large deformations, are considered and developed. Since the governing non-linear equations usually becomes too complex to be handled analytically, the main focus has been on developing methods that can be incorporated into a numerical solution scheme, such as the finite element method.First methods to numerically track equilibrium curves and to calculate singular points along the equilibrium path will be discussed. The path following technique adopted is the well stablished arc-length method. To calculate the singular points along the equilibrium path, an extended system of equations is used which directly calculates the location of the singular point.The main interest in this thesis is the treatment of the singular points along the equilibrium path, especially for bifurcation points. For bifurcation points an asymptotic expansion method is developed, which combines a Lyapunov-Schmidt decomposition of the solution space with asymptotic expansions of both the displacements and the load, as well as of the equilibrium equations. This method can accurately predict the postbuckling behaviour on the secondary branches, at least in the vicinity of the bifurcation, for both asymmetric and symmetric single and multiple bifurcations. Special care is taken for symmetric multiple bifurcations, where higher order expansions have to be used to obtain correct results. The inclusion of higher order terms in the expansion allows for correct treatment of certain bifurcation points where the number of secondary paths emerging are larger than usually assumed.The methods is applied mainly on truss-bar structures, which exhibit many different types of singularities, and yet are computationally cheap.Finally, a classic stability problem is examined, namely the elastica. Contrary to the classical elastica problem the beam axis is here allowed to extend. This leads to a formulation where a closed-form solution can be obtained in terms of elliptical integrals. The considered form of the elastica shows some interesting stability phenomena compared to the classical inextensible case, e.g. the buckling load and the number of bifurcation points depend on the slenderness of the beam, and for certain values of the slenderness the load is initially decreasing on a postbuckling branch. The developed numerical methods are then applied to the elastica problem, where it is found that the properties predicted from the analytical treatment are in close agreement with the finite element results." @default.
- W88152185 created "2016-06-24" @default.
- W88152185 creator A5041298143 @default.
- W88152185 date "2000-01-01" @default.
- W88152185 modified "2023-09-28" @default.
- W88152185 title "Branch Identification in Elastic Stability Analysis" @default.
- W88152185 hasPublicationYear "2000" @default.
- W88152185 type Work @default.
- W88152185 sameAs 88152185 @default.
- W88152185 citedByCount "0" @default.
- W88152185 crossrefType "dissertation" @default.
- W88152185 hasAuthorship W88152185A5041298143 @default.
- W88152185 hasConcept C11683690 @default.
- W88152185 hasConcept C121332964 @default.
- W88152185 hasConcept C134306372 @default.
- W88152185 hasConcept C158622935 @default.
- W88152185 hasConcept C2781349735 @default.
- W88152185 hasConcept C28826006 @default.
- W88152185 hasConcept C33923547 @default.
- W88152185 hasConcept C62520636 @default.
- W88152185 hasConcept C78045399 @default.
- W88152185 hasConcept C94766913 @default.
- W88152185 hasConceptScore W88152185C11683690 @default.
- W88152185 hasConceptScore W88152185C121332964 @default.
- W88152185 hasConceptScore W88152185C134306372 @default.
- W88152185 hasConceptScore W88152185C158622935 @default.
- W88152185 hasConceptScore W88152185C2781349735 @default.
- W88152185 hasConceptScore W88152185C28826006 @default.
- W88152185 hasConceptScore W88152185C33923547 @default.
- W88152185 hasConceptScore W88152185C62520636 @default.
- W88152185 hasConceptScore W88152185C78045399 @default.
- W88152185 hasConceptScore W88152185C94766913 @default.
- W88152185 hasLocation W881521851 @default.
- W88152185 hasOpenAccess W88152185 @default.
- W88152185 hasPrimaryLocation W881521851 @default.
- W88152185 hasRelatedWork W1593640038 @default.
- W88152185 hasRelatedWork W1650426650 @default.
- W88152185 hasRelatedWork W1965918143 @default.
- W88152185 hasRelatedWork W1972090255 @default.
- W88152185 hasRelatedWork W1979021434 @default.
- W88152185 hasRelatedWork W2007509691 @default.
- W88152185 hasRelatedWork W2010857600 @default.
- W88152185 hasRelatedWork W2049357286 @default.
- W88152185 hasRelatedWork W2060934236 @default.
- W88152185 hasRelatedWork W2069023127 @default.
- W88152185 hasRelatedWork W2079333499 @default.
- W88152185 hasRelatedWork W2092042259 @default.
- W88152185 hasRelatedWork W2161828185 @default.
- W88152185 hasRelatedWork W2284549979 @default.
- W88152185 hasRelatedWork W2344715276 @default.
- W88152185 hasRelatedWork W2748011750 @default.
- W88152185 hasRelatedWork W3087438314 @default.
- W88152185 hasRelatedWork W3202423329 @default.
- W88152185 hasRelatedWork W50778785 @default.
- W88152185 hasRelatedWork W51490151 @default.
- W88152185 isParatext "false" @default.
- W88152185 isRetracted "false" @default.
- W88152185 magId "88152185" @default.
- W88152185 workType "dissertation" @default.