Matches in SemOpenAlex for { <https://semopenalex.org/work/W88735296> ?p ?o ?g. }
- W88735296 abstract "In this thesis we prove three main results on embeddings of spanning subgraphs into graphs and hypergraphs. The first is that for log(^5)(^0) n/n ≤ p ≤ 1 – n (^-)(^1)(^/)(^4) log(^9) n, a binomial random graph G ~ G(_n)(_,)(_p) contains with high probability a collection of └(delta)(G)/2┘ edge disjoint Hamilton cycles (plus an additional edge-disjoint matching if (delta)(G) is odd), which confirms for this range of p a conjecture of Frieze and Krivelevich. Secondly, we show that any `robustly expanding' graph with linear minimum degree on sufficiently many vertices contains every bipartite graph on the same number of vertices with bounded maximum degree and sublinear bandwidth. As corollaries we obtain the same result for any graph which satisfies the Ore-type condition d(x) + d(y) ≥ (1 + (eta))n for non-adjacent vertices x and y, or which satisfies a certain degree sequence condition. Thirdly, for (gamma) > 0 we give a polynomial-time algorithm for determining whether or not a k-graph with minimum codegree at least (1/k + (gamma))n contains a perfect matching. This essentially answers a question of Rodl, Rucinski and Szemeredi. Our algorithm relies on a strengthening of a structural result of Keevash and Mycroft. Finally and additionally, we include a short note on Maker-Breaker games." @default.
- W88735296 created "2016-06-24" @default.
- W88735296 creator A5063051891 @default.
- W88735296 date "2013-07-01" @default.
- W88735296 modified "2023-09-24" @default.
- W88735296 title "Embedding spanning structures in graphs and hypergraphs" @default.
- W88735296 cites W1482601444 @default.
- W88735296 cites W1568383619 @default.
- W88735296 cites W1603859152 @default.
- W88735296 cites W1776544432 @default.
- W88735296 cites W1838065876 @default.
- W88735296 cites W184281306 @default.
- W88735296 cites W1963641871 @default.
- W88735296 cites W1966599810 @default.
- W88735296 cites W1971367602 @default.
- W88735296 cites W1973167211 @default.
- W88735296 cites W1976828176 @default.
- W88735296 cites W1978240867 @default.
- W88735296 cites W1985061810 @default.
- W88735296 cites W1988204800 @default.
- W88735296 cites W1991646384 @default.
- W88735296 cites W1995043396 @default.
- W88735296 cites W1995457760 @default.
- W88735296 cites W1995581755 @default.
- W88735296 cites W1996277976 @default.
- W88735296 cites W2000252962 @default.
- W88735296 cites W2000934872 @default.
- W88735296 cites W2001927417 @default.
- W88735296 cites W2002353129 @default.
- W88735296 cites W2005223884 @default.
- W88735296 cites W2006567887 @default.
- W88735296 cites W2009232680 @default.
- W88735296 cites W2009873575 @default.
- W88735296 cites W2010688605 @default.
- W88735296 cites W2014564484 @default.
- W88735296 cites W2015263376 @default.
- W88735296 cites W2016267660 @default.
- W88735296 cites W2017776863 @default.
- W88735296 cites W2018724658 @default.
- W88735296 cites W2019367452 @default.
- W88735296 cites W2027878806 @default.
- W88735296 cites W2030651378 @default.
- W88735296 cites W2034679949 @default.
- W88735296 cites W2035089435 @default.
- W88735296 cites W2044011276 @default.
- W88735296 cites W2045472305 @default.
- W88735296 cites W2046583195 @default.
- W88735296 cites W2047171329 @default.
- W88735296 cites W2047296019 @default.
- W88735296 cites W2051742761 @default.
- W88735296 cites W2053929306 @default.
- W88735296 cites W2054249991 @default.
- W88735296 cites W2056485055 @default.
- W88735296 cites W2059608229 @default.
- W88735296 cites W2065836783 @default.
- W88735296 cites W2066266229 @default.
- W88735296 cites W2068871408 @default.
- W88735296 cites W2070866278 @default.
- W88735296 cites W2072570267 @default.
- W88735296 cites W2074971154 @default.
- W88735296 cites W2078652928 @default.
- W88735296 cites W2081157042 @default.
- W88735296 cites W2083035128 @default.
- W88735296 cites W2087348204 @default.
- W88735296 cites W2093922095 @default.
- W88735296 cites W2095145505 @default.
- W88735296 cites W2101846098 @default.
- W88735296 cites W2105457218 @default.
- W88735296 cites W2106107541 @default.
- W88735296 cites W2109266036 @default.
- W88735296 cites W2114629872 @default.
- W88735296 cites W2116537669 @default.
- W88735296 cites W2127902766 @default.
- W88735296 cites W2131867452 @default.
- W88735296 cites W2134792353 @default.
- W88735296 cites W2136086442 @default.
- W88735296 cites W2138256399 @default.
- W88735296 cites W2140606499 @default.
- W88735296 cites W2144292514 @default.
- W88735296 cites W2149054878 @default.
- W88735296 cites W2160743102 @default.
- W88735296 cites W2166751465 @default.
- W88735296 cites W2170527238 @default.
- W88735296 cites W2172107634 @default.
- W88735296 cites W2183769808 @default.
- W88735296 cites W2303154786 @default.
- W88735296 cites W2335389215 @default.
- W88735296 cites W23397926 @default.
- W88735296 cites W2401610261 @default.
- W88735296 cites W2901284226 @default.
- W88735296 cites W2905110430 @default.
- W88735296 cites W2949510484 @default.
- W88735296 cites W2950795664 @default.
- W88735296 cites W2953272193 @default.
- W88735296 cites W2962759378 @default.
- W88735296 cites W3100779871 @default.
- W88735296 cites W3143219376 @default.
- W88735296 cites W3144881883 @default.
- W88735296 cites W788200807 @default.
- W88735296 cites W1991387851 @default.