Matches in SemOpenAlex for { <https://semopenalex.org/work/W887548946> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W887548946 abstract "The aim of this paper is to approximate a finite-state Markov process by another process with fewer states, called herein the approximating process. The approximation problem is formulated using two different methods. The first method, utilizes the total variation distance to discriminate the transition probabilities of a high dimensional Markov process and a reduced order Markov process. The approximation is obtained by optimizing a linear functional defined in terms of transition probabilities of the reduced order Markov process over a total variation distance constraint. The transition probabilities of the approximated Markov process are given by a water-filling solution. The second method, utilizes total variation distance to discriminate the invariant probability of a Markov process and that of the approximating process. The approximation is obtained via two alternative formulations: (a) maximizing a functional of the occupancy distribution of the Markov process, and (b) maximizing the entropy of the approximating process invariant probability. For both formulations, once the reduced invariant probability is obtained, which does not correspond to a Markov process, a further approximation by a Markov process is proposed which minimizes the Kullback-Leibler divergence. These approximations are given by water-filling solutions. Finally, the theoretical results of both methods are applied to specific examples to illustrate the methodology, and the water-filling behavior of the approximations." @default.
- W887548946 created "2016-06-24" @default.
- W887548946 creator A5000676115 @default.
- W887548946 creator A5024256519 @default.
- W887548946 creator A5030551100 @default.
- W887548946 creator A5035087201 @default.
- W887548946 creator A5062456864 @default.
- W887548946 date "2017-03-01" @default.
- W887548946 modified "2023-09-25" @default.
- W887548946 title "Approximation of Markov Processes by Lower Dimensional Processes via Total Variation Metrics" @default.
- W887548946 cites W1972141748 @default.
- W887548946 cites W1975736346 @default.
- W887548946 cites W2022918053 @default.
- W887548946 cites W2032558547 @default.
- W887548946 cites W2032916024 @default.
- W887548946 cites W2044694249 @default.
- W887548946 cites W2054658115 @default.
- W887548946 cites W2087284982 @default.
- W887548946 cites W2102098892 @default.
- W887548946 cites W2103461269 @default.
- W887548946 cites W2106874445 @default.
- W887548946 cites W2125838338 @default.
- W887548946 cites W2133304784 @default.
- W887548946 cites W2135813035 @default.
- W887548946 cites W2145196940 @default.
- W887548946 cites W2150844583 @default.
- W887548946 cites W2154421872 @default.
- W887548946 cites W2167660851 @default.
- W887548946 cites W2168334427 @default.
- W887548946 cites W2963705438 @default.
- W887548946 cites W3087929315 @default.
- W887548946 doi "https://doi.org/10.1109/tac.2016.2578299" @default.
- W887548946 hasPublicationYear "2017" @default.
- W887548946 type Work @default.
- W887548946 sameAs 887548946 @default.
- W887548946 citedByCount "5" @default.
- W887548946 countsByYear W8875489462015 @default.
- W887548946 countsByYear W8875489462019 @default.
- W887548946 countsByYear W8875489462020 @default.
- W887548946 countsByYear W8875489462021 @default.
- W887548946 crossrefType "journal-article" @default.
- W887548946 hasAuthorship W887548946A5000676115 @default.
- W887548946 hasAuthorship W887548946A5024256519 @default.
- W887548946 hasAuthorship W887548946A5030551100 @default.
- W887548946 hasAuthorship W887548946A5035087201 @default.
- W887548946 hasAuthorship W887548946A5062456864 @default.
- W887548946 hasBestOaLocation W8875489462 @default.
- W887548946 hasConcept C105795698 @default.
- W887548946 hasConcept C106666656 @default.
- W887548946 hasConcept C126255220 @default.
- W887548946 hasConcept C159886148 @default.
- W887548946 hasConcept C163540672 @default.
- W887548946 hasConcept C163836022 @default.
- W887548946 hasConcept C189973286 @default.
- W887548946 hasConcept C28826006 @default.
- W887548946 hasConcept C33923547 @default.
- W887548946 hasConcept C54907487 @default.
- W887548946 hasConcept C9679016 @default.
- W887548946 hasConcept C98763669 @default.
- W887548946 hasConceptScore W887548946C105795698 @default.
- W887548946 hasConceptScore W887548946C106666656 @default.
- W887548946 hasConceptScore W887548946C126255220 @default.
- W887548946 hasConceptScore W887548946C159886148 @default.
- W887548946 hasConceptScore W887548946C163540672 @default.
- W887548946 hasConceptScore W887548946C163836022 @default.
- W887548946 hasConceptScore W887548946C189973286 @default.
- W887548946 hasConceptScore W887548946C28826006 @default.
- W887548946 hasConceptScore W887548946C33923547 @default.
- W887548946 hasConceptScore W887548946C54907487 @default.
- W887548946 hasConceptScore W887548946C9679016 @default.
- W887548946 hasConceptScore W887548946C98763669 @default.
- W887548946 hasLocation W8875489461 @default.
- W887548946 hasLocation W8875489462 @default.
- W887548946 hasLocation W8875489463 @default.
- W887548946 hasOpenAccess W887548946 @default.
- W887548946 hasPrimaryLocation W8875489461 @default.
- W887548946 hasRelatedWork W1974839821 @default.
- W887548946 hasRelatedWork W1977109468 @default.
- W887548946 hasRelatedWork W2159877461 @default.
- W887548946 hasRelatedWork W2394520080 @default.
- W887548946 hasRelatedWork W2534591499 @default.
- W887548946 hasRelatedWork W2788142463 @default.
- W887548946 hasRelatedWork W3022014775 @default.
- W887548946 hasRelatedWork W3023188449 @default.
- W887548946 hasRelatedWork W4287550748 @default.
- W887548946 hasRelatedWork W3104357704 @default.
- W887548946 isParatext "false" @default.
- W887548946 isRetracted "false" @default.
- W887548946 magId "887548946" @default.
- W887548946 workType "article" @default.