Matches in SemOpenAlex for { <https://semopenalex.org/work/W888908547> ?p ?o ?g. }
- W888908547 abstract "The absorbed dose assessment in the presence of tissue heterogeneities in external radiotherapy is an issue that has concerned the medical physics community for almost three decades and it is still a matter of concern. Aiming to obtain dose distributions in clinically-acceptable computation times, analytical dose calculation algorithms integrated in treatment planning systems based their calculations on water-equivalent properties and elemental compositions of each material are disregarded despite the fact that radiation interaction processes strongly depend on them. This approximation provides reasonable accuracy in water-like tissues but the reliability of predicted dose distributions in the patient might be questioned when the radiation beam is traversing complex density heterogeneities, such as air, lung or bone. Experimental verification of dose calculation algorithms is essential and ionization chambers (IC) are the reference detectors for this purpose. However, correction factors to determine the absorbed dose in materials other than water are unknown for most IC types and therefore, they cannot procure reliable measurements in heterogeneous media. Monte Carlo (MC) simulations offer a high precision in dose calculation by tracking all particles individually taking into account the specific properties of each material. Unfortunately, accuracy and computation speed are inversely proportional and MC-based approaches generally entail long calculation times, unaffordable in the clinical routine. Nevertheless, for the cases where the expected errors in the predicted dose distributions during treatment planning are significant, i.e. when the radiation beam path is highly inhomogeneous, the benefit of resorting to MC dose calculations to achieve higher accuracy would be undoubtedly worth a presumably long computation time.
 In this thesis the suitability of several detectors to accurately determine the absorbed dose in the presence of high-density heterogeneities was evaluated. Ultra-thin thermoluminescent detectors (TLDs) and radiochromic films were considered as potential candidates for entailing low perturbation effects. MC dose calculations enabled to validate and understand the experimental results. Further, both dosimetric techniques were employed to thoroughly examine the behavior of a recently-released non-analytical dose calculation algorithm (AXB)¿which copes with the elemental composition of materials and thus, is claimed to yield promising results¿in heterogeneous phantoms. Finally, a fast algorithm named the heterogeneity index (HI) was developed to quantify the level of patient tissue heterogeneities traversed by the radiotherapy beam. The validity of this HI to easily predict the accuracy of dose distributions based on analytical dose calculations was analyzed by evaluating the correlation between the HI and the dose uncertainties estimated by using MC as the reference.
 The results show that a detector of 50µm thickness can provide reliable absorbed dose measurements in high-density heterogeneities since perturbation correction factors are unneeded. AXB was found to provide comparable accuracy to MC dose calculations in the presence of heterogeneities but uncertainties in the material assignment procedure might lead to significant changes in the dose distributions, which deserves a word of caution when carrying out experimental verifications. Finally, HI was found to be a fast and good indicator for the accuracy of dose delivery in terms of tumor dose coverage. Accordingly, HI can be implemented in the clinical routine to decide whether or not a MC dose recalculation of the plan should be considered to ensure that dose uncertainties are kept within tolerance levels. In conclusion, this thesis work tackled the main concerns on the absorbed dose calculation and measurement in the presence of tissue heterogeneities." @default.
- W888908547 created "2016-06-24" @default.
- W888908547 creator A5031331700 @default.
- W888908547 date "2023-07-25" @default.
- W888908547 modified "2023-10-01" @default.
- W888908547 title "Absorbed dose assessment in the presence of tissue heterogeneities in external radiotherapy" @default.
- W888908547 cites W1225906466 @default.
- W888908547 cites W1963650237 @default.
- W888908547 cites W1964087970 @default.
- W888908547 cites W1965609041 @default.
- W888908547 cites W1966234893 @default.
- W888908547 cites W1969798638 @default.
- W888908547 cites W1969960641 @default.
- W888908547 cites W1970296966 @default.
- W888908547 cites W1971303810 @default.
- W888908547 cites W1972284341 @default.
- W888908547 cites W1972456074 @default.
- W888908547 cites W1972618159 @default.
- W888908547 cites W1974174792 @default.
- W888908547 cites W1975395516 @default.
- W888908547 cites W1977606018 @default.
- W888908547 cites W1978344596 @default.
- W888908547 cites W1979190546 @default.
- W888908547 cites W1982085533 @default.
- W888908547 cites W1983641888 @default.
- W888908547 cites W1983661073 @default.
- W888908547 cites W1983869432 @default.
- W888908547 cites W1984472601 @default.
- W888908547 cites W1986437999 @default.
- W888908547 cites W1990181756 @default.
- W888908547 cites W1992108171 @default.
- W888908547 cites W1992228359 @default.
- W888908547 cites W1992408402 @default.
- W888908547 cites W1997344107 @default.
- W888908547 cites W1997542479 @default.
- W888908547 cites W1998167896 @default.
- W888908547 cites W1999189079 @default.
- W888908547 cites W2000593531 @default.
- W888908547 cites W2000821547 @default.
- W888908547 cites W2001064878 @default.
- W888908547 cites W2004156023 @default.
- W888908547 cites W2005348841 @default.
- W888908547 cites W2005653676 @default.
- W888908547 cites W2006806731 @default.
- W888908547 cites W2007413327 @default.
- W888908547 cites W2008700492 @default.
- W888908547 cites W2008995484 @default.
- W888908547 cites W2009543464 @default.
- W888908547 cites W2010792195 @default.
- W888908547 cites W2011846352 @default.
- W888908547 cites W2013782780 @default.
- W888908547 cites W2014850260 @default.
- W888908547 cites W2015997733 @default.
- W888908547 cites W2017469962 @default.
- W888908547 cites W2017962380 @default.
- W888908547 cites W2020527617 @default.
- W888908547 cites W2022985124 @default.
- W888908547 cites W2023676835 @default.
- W888908547 cites W2025109572 @default.
- W888908547 cites W2025800971 @default.
- W888908547 cites W2026755370 @default.
- W888908547 cites W2027426300 @default.
- W888908547 cites W2028189236 @default.
- W888908547 cites W2028773438 @default.
- W888908547 cites W2028877387 @default.
- W888908547 cites W2030544564 @default.
- W888908547 cites W2031661772 @default.
- W888908547 cites W2032212113 @default.
- W888908547 cites W2032373769 @default.
- W888908547 cites W2033854594 @default.
- W888908547 cites W2036612310 @default.
- W888908547 cites W2037115140 @default.
- W888908547 cites W2037667426 @default.
- W888908547 cites W2038196526 @default.
- W888908547 cites W2038265795 @default.
- W888908547 cites W2038719581 @default.
- W888908547 cites W2040495918 @default.
- W888908547 cites W2043864189 @default.
- W888908547 cites W2044616999 @default.
- W888908547 cites W2045073901 @default.
- W888908547 cites W2045415729 @default.
- W888908547 cites W2045471467 @default.
- W888908547 cites W2045873105 @default.
- W888908547 cites W2045996258 @default.
- W888908547 cites W2046175574 @default.
- W888908547 cites W2046378231 @default.
- W888908547 cites W2046970750 @default.
- W888908547 cites W2048404864 @default.
- W888908547 cites W2050976201 @default.
- W888908547 cites W2054875227 @default.
- W888908547 cites W2058068517 @default.
- W888908547 cites W2058528974 @default.
- W888908547 cites W2060384103 @default.
- W888908547 cites W2061493879 @default.
- W888908547 cites W2061846310 @default.
- W888908547 cites W2063414481 @default.
- W888908547 cites W2064257567 @default.
- W888908547 cites W2064317436 @default.
- W888908547 cites W2065161523 @default.
- W888908547 cites W206788695 @default.