Matches in SemOpenAlex for { <https://semopenalex.org/work/W8933982> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W8933982 endingPage "201" @default.
- W8933982 startingPage "187" @default.
- W8933982 abstract "Let τ (resp. τ*) be the uniform three-directional mesh of the plane generated by the vectors ({e_1} = left( {1,0} right),{e_2} = left( {0,1} right),{e_3} = left( { - 1, - 1} right);left( {resp.;e_1^* = (1,0),e_2^* = ( - frac{1}{2},frac{{sqrt 3 }}{2}),e_3^* = ( - frac{1}{2},frac{{sqrt 3 }}{2})} right)). Let ( {text{P}}_{n{text{ }}}^s(tau ) ) and ( {text{P}}_{n{text{ }}}^s(tau *) ) be the spaces of piecewise polynomial functions of degree n and smoothness s on these meshes. There exist two interesting families of B-splines, respectively in the spaces ( P_{3r + 1}^{2r}left( tau right),{text{ }}r{text{ }} geqslant {text{ }}0 ) and ( P_{3r}^{2r - 1}left( tau right),{text{ }}r{text{ }} geqslant {text{ }}1 ). In the first space, B-splines with minimal support are simultaneously box-splines and H r+1-splines, i.e., their support is the hexagon H r+1, centered at the origin, whose sides are composed of r + 1 edges of triangles of the mesh. In the second space, there exist three types of box-splines whose supports are non regular hexagons. Generalizing examples given in [18] and [19], we construct H r+1-splines in the space ( P_{3r}^{2r - 1}left( tau right) ) as linear combinations of translates of three box-splines. Then we construct various differential and discrete quasi-interpolants (QI) which have the best possible approximation order, for degrees (resp. smoothness orders) ranging from 3 to 10 (resp. from 1 to 6). Their computation is made easier thanks to the symmetry properties of H-splines. Finally, we give some examples of QI with nearly minimal infinite norms, which we call near-best quasi-interpolants." @default.
- W8933982 created "2016-06-24" @default.
- W8933982 creator A5041868556 @default.
- W8933982 date "2002-01-01" @default.
- W8933982 modified "2023-10-15" @default.
- W8933982 title "H-splines and Quasi-interpolants on a Three Directional Mesh" @default.
- W8933982 cites W1576298279 @default.
- W8933982 cites W1981937069 @default.
- W8933982 cites W2048972275 @default.
- W8933982 cites W2073971644 @default.
- W8933982 cites W2095145033 @default.
- W8933982 cites W4233782503 @default.
- W8933982 cites W4252664964 @default.
- W8933982 doi "https://doi.org/10.1007/978-3-0348-7600-1_14" @default.
- W8933982 hasPublicationYear "2002" @default.
- W8933982 type Work @default.
- W8933982 sameAs 8933982 @default.
- W8933982 citedByCount "7" @default.
- W8933982 countsByYear W89339822017 @default.
- W8933982 countsByYear W89339822022 @default.
- W8933982 crossrefType "book-chapter" @default.
- W8933982 hasAuthorship W8933982A5041868556 @default.
- W8933982 hasConcept C10138342 @default.
- W8933982 hasConcept C102634674 @default.
- W8933982 hasConcept C111919701 @default.
- W8933982 hasConcept C114614502 @default.
- W8933982 hasConcept C134306372 @default.
- W8933982 hasConcept C162324750 @default.
- W8933982 hasConcept C164660894 @default.
- W8933982 hasConcept C182306322 @default.
- W8933982 hasConcept C2778572836 @default.
- W8933982 hasConcept C33923547 @default.
- W8933982 hasConcept C41008148 @default.
- W8933982 hasConcept C90119067 @default.
- W8933982 hasConceptScore W8933982C10138342 @default.
- W8933982 hasConceptScore W8933982C102634674 @default.
- W8933982 hasConceptScore W8933982C111919701 @default.
- W8933982 hasConceptScore W8933982C114614502 @default.
- W8933982 hasConceptScore W8933982C134306372 @default.
- W8933982 hasConceptScore W8933982C162324750 @default.
- W8933982 hasConceptScore W8933982C164660894 @default.
- W8933982 hasConceptScore W8933982C182306322 @default.
- W8933982 hasConceptScore W8933982C2778572836 @default.
- W8933982 hasConceptScore W8933982C33923547 @default.
- W8933982 hasConceptScore W8933982C41008148 @default.
- W8933982 hasConceptScore W8933982C90119067 @default.
- W8933982 hasLocation W89339821 @default.
- W8933982 hasOpenAccess W8933982 @default.
- W8933982 hasPrimaryLocation W89339821 @default.
- W8933982 hasRelatedWork W1491736154 @default.
- W8933982 hasRelatedWork W1540071554 @default.
- W8933982 hasRelatedWork W1582100905 @default.
- W8933982 hasRelatedWork W18551163 @default.
- W8933982 hasRelatedWork W1965863089 @default.
- W8933982 hasRelatedWork W1972140143 @default.
- W8933982 hasRelatedWork W1975857851 @default.
- W8933982 hasRelatedWork W1977028349 @default.
- W8933982 hasRelatedWork W1988266107 @default.
- W8933982 hasRelatedWork W2003706524 @default.
- W8933982 hasRelatedWork W2004127522 @default.
- W8933982 hasRelatedWork W2007080689 @default.
- W8933982 hasRelatedWork W2058672562 @default.
- W8933982 hasRelatedWork W2067595175 @default.
- W8933982 hasRelatedWork W2095145033 @default.
- W8933982 hasRelatedWork W2612706235 @default.
- W8933982 hasRelatedWork W2953247686 @default.
- W8933982 hasRelatedWork W2965713317 @default.
- W8933982 hasRelatedWork W48763268 @default.
- W8933982 hasRelatedWork W593890618 @default.
- W8933982 isParatext "false" @default.
- W8933982 isRetracted "false" @default.
- W8933982 magId "8933982" @default.
- W8933982 workType "book-chapter" @default.