Matches in SemOpenAlex for { <https://semopenalex.org/work/W893480> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W893480 abstract "Bayesian methods have become increasingly popular in modern statistical analysis and are being applied to a broad spectrum of scientific fields and research areas. This paper introduces the new MCMC procedure in SAS/STAT 9.2, which is designed for general-purpose Bayesian computations. The MCMC procedure enables you to carry out analysis on a wide range of complex Bayesian statistical models. The procedure uses the Markov chain Monte Carlo (MCMC) algorithm to draw samples from an arbitrary posterior distribution, which is defined by the prior distributions for the parameters and the likelihood function for the data that you specify. This paper describes how to use the MCMC procedure for estimation, inference, and prediction. The MCMC procedure is based on Markov chain Monte Carlo methods; it performs posterior sampling and statistical inference for Bayesian parametric models. The procedure fits single-level or multilevel models. These models can take various forms, from linear to nonlinear models, by using standard or nonstandard distributions. To use the procedure, you declare parameters in the model and specify prior distributions of the parameters and a conditional distribution for the response variable given the parameters. The MCMC procedure enables you to fit models by using either a keyword for a standard form (normal, binomial, gamma) or SAS programming statements to specify a general distribution. The MCMC procedure uses a random walk Metropolis algorithm to simulate samples from the model you specify. You can also choose an optimization technique (such as the quasi-Newton algorithm) to estimate the posterior mode and approximate the covariance matrix around the mode. The procedure computes a number of posterior estimates, and it also outputs the posterior samples to a data set for further analysis. Successful Bayesian inference that uses this sampling-based approach depends on the convergence of the Markov chain. The MCMC procedure provides a number of convergence diagnostics so you can assess the convergence of the chains. This paper first provides a brief overview of some relevant concepts in Bayesian methods and sampling-based infer- ence, and then explains the mechanisms that drive the MCMC procedure. A number of examples, ordered from simple to more complex, demonstrate how to use the procedure. The examples show a single-parameter binomial model, inference on functions of parameters, power priors, nonstandard distributions, sensitivity analysis, a random-effects model, and meta-analysis. In addition to the models that are demonstrated in this paper, you can use PROC MCMC to fit zero-inflated Poisson regression, survival analysis, ordinal multinomial models, time series, missing data analysis, and so on. Detailed examples and discussions can be found in the PROC MCMC documentation in the SAS/STAT User's Guide and on SAS web site (see the section CONTACT INFORMATION on page 22 for more details)." @default.
- W893480 created "2016-06-24" @default.
- W893480 creator A5047919163 @default.
- W893480 date "2009-01-01" @default.
- W893480 modified "2023-09-26" @default.
- W893480 title "Bayesian Modeling Using the MCMC Procedure" @default.
- W893480 cites W1479881385 @default.
- W893480 cites W1490324987 @default.
- W893480 cites W1566333899 @default.
- W893480 cites W1988520084 @default.
- W893480 cites W2020946357 @default.
- W893480 cites W2024315245 @default.
- W893480 cites W2030617491 @default.
- W893480 cites W2045656233 @default.
- W893480 cites W2051203581 @default.
- W893480 cites W2056760934 @default.
- W893480 cites W2069739265 @default.
- W893480 cites W2094414211 @default.
- W893480 cites W2120695425 @default.
- W893480 cites W2138309709 @default.
- W893480 cites W2156273867 @default.
- W893480 cites W2277729655 @default.
- W893480 cites W3145167355 @default.
- W893480 hasPublicationYear "2009" @default.
- W893480 type Work @default.
- W893480 sameAs 893480 @default.
- W893480 citedByCount "14" @default.
- W893480 countsByYear W8934802012 @default.
- W893480 countsByYear W8934802013 @default.
- W893480 countsByYear W8934802014 @default.
- W893480 countsByYear W8934802015 @default.
- W893480 countsByYear W8934802016 @default.
- W893480 countsByYear W8934802018 @default.
- W893480 crossrefType "journal-article" @default.
- W893480 hasAuthorship W893480A5047919163 @default.
- W893480 hasConcept C101112237 @default.
- W893480 hasConcept C107673813 @default.
- W893480 hasConcept C111350023 @default.
- W893480 hasConcept C11413529 @default.
- W893480 hasConcept C154945302 @default.
- W893480 hasConcept C158424031 @default.
- W893480 hasConcept C160234255 @default.
- W893480 hasConcept C177769412 @default.
- W893480 hasConcept C33923547 @default.
- W893480 hasConcept C41008148 @default.
- W893480 hasConcept C57830394 @default.
- W893480 hasConceptScore W893480C101112237 @default.
- W893480 hasConceptScore W893480C107673813 @default.
- W893480 hasConceptScore W893480C111350023 @default.
- W893480 hasConceptScore W893480C11413529 @default.
- W893480 hasConceptScore W893480C154945302 @default.
- W893480 hasConceptScore W893480C158424031 @default.
- W893480 hasConceptScore W893480C160234255 @default.
- W893480 hasConceptScore W893480C177769412 @default.
- W893480 hasConceptScore W893480C33923547 @default.
- W893480 hasConceptScore W893480C41008148 @default.
- W893480 hasConceptScore W893480C57830394 @default.
- W893480 hasLocation W8934801 @default.
- W893480 hasOpenAccess W893480 @default.
- W893480 hasPrimaryLocation W8934801 @default.
- W893480 hasRelatedWork W1857729084 @default.
- W893480 hasRelatedWork W2011190924 @default.
- W893480 hasRelatedWork W2186452483 @default.
- W893480 hasRelatedWork W2203979974 @default.
- W893480 hasRelatedWork W2748207556 @default.
- W893480 hasRelatedWork W2770729853 @default.
- W893480 hasRelatedWork W2946817066 @default.
- W893480 hasRelatedWork W2949651817 @default.
- W893480 hasRelatedWork W2952813155 @default.
- W893480 hasRelatedWork W2964250089 @default.
- W893480 hasRelatedWork W2965376662 @default.
- W893480 hasRelatedWork W2967542826 @default.
- W893480 hasRelatedWork W3036498615 @default.
- W893480 hasRelatedWork W3103714082 @default.
- W893480 hasRelatedWork W3106391956 @default.
- W893480 hasRelatedWork W3124605600 @default.
- W893480 hasRelatedWork W3125164547 @default.
- W893480 hasRelatedWork W3199289087 @default.
- W893480 hasRelatedWork W3202257693 @default.
- W893480 hasRelatedWork W776430525 @default.
- W893480 isParatext "false" @default.
- W893480 isRetracted "false" @default.
- W893480 magId "893480" @default.
- W893480 workType "article" @default.