Matches in SemOpenAlex for { <https://semopenalex.org/work/W894872404> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W894872404 abstract "The stopping rules in sequential methods have posed a lot of difficulties inanalyzing the efficiencies of sequential procedures. The exact distributionsof the stopping points and the statistics related to those stopping rules arehardly available explicitly. Woodroofe (1976), (1977), Lai and Siegmund(1977), (1979) and Aras and Woodroofe (1993) have laid a foundation formaking asymptotic analysis for a large class of stopping rules.In this thesis we consider the moments and distributions of some randomlystopped standardized summations. Refined moment expansions are derivedafter simplifying a result of Zhang (1988) in nonlinear renewal theory, andmoreover, Edgeworth expansion type of approximations for the distributionsare provided by means of Fourier transformations. A rigorous mathematicalstudy for a subclass cases while Mykland (1993)'s martingale expansion isapplicable shows that the expansions from these two different ways are thesame. Their applications in sequential estimations and estimations aftersequential tests are established. The second order coverage of a confidenceinterval by Chow-Robbins procedure, the bias and mean squared error of themaximum likelihood estimator after a sequential test as well as the skewnessof its distribution are presented. Simulation studies are conducted for bothsequential estimation and estimation after sequential test, which show thatthe approximations we obtained work very well." @default.
- W894872404 created "2016-06-24" @default.
- W894872404 creator A5010465278 @default.
- W894872404 date "1999-10-01" @default.
- W894872404 modified "2023-09-24" @default.
- W894872404 title "Approximations for moments and distributions in sequential analysis" @default.
- W894872404 hasPublicationYear "1999" @default.
- W894872404 type Work @default.
- W894872404 sameAs 894872404 @default.
- W894872404 citedByCount "0" @default.
- W894872404 crossrefType "dissertation" @default.
- W894872404 hasAuthorship W894872404A5010465278 @default.
- W894872404 hasConcept C105795698 @default.
- W894872404 hasConcept C121332964 @default.
- W894872404 hasConcept C122342681 @default.
- W894872404 hasConcept C179254644 @default.
- W894872404 hasConcept C185429906 @default.
- W894872404 hasConcept C28826006 @default.
- W894872404 hasConcept C33923547 @default.
- W894872404 hasConcept C48406656 @default.
- W894872404 hasConcept C74650414 @default.
- W894872404 hasConcept C80478641 @default.
- W894872404 hasConcept C86426650 @default.
- W894872404 hasConcept C99888217 @default.
- W894872404 hasConceptScore W894872404C105795698 @default.
- W894872404 hasConceptScore W894872404C121332964 @default.
- W894872404 hasConceptScore W894872404C122342681 @default.
- W894872404 hasConceptScore W894872404C179254644 @default.
- W894872404 hasConceptScore W894872404C185429906 @default.
- W894872404 hasConceptScore W894872404C28826006 @default.
- W894872404 hasConceptScore W894872404C33923547 @default.
- W894872404 hasConceptScore W894872404C48406656 @default.
- W894872404 hasConceptScore W894872404C74650414 @default.
- W894872404 hasConceptScore W894872404C80478641 @default.
- W894872404 hasConceptScore W894872404C86426650 @default.
- W894872404 hasConceptScore W894872404C99888217 @default.
- W894872404 hasLocation W8948724041 @default.
- W894872404 hasOpenAccess W894872404 @default.
- W894872404 hasPrimaryLocation W8948724041 @default.
- W894872404 hasRelatedWork W2030715697 @default.
- W894872404 hasRelatedWork W2042200107 @default.
- W894872404 hasRelatedWork W2043099224 @default.
- W894872404 hasRelatedWork W2059158718 @default.
- W894872404 hasRelatedWork W2066653456 @default.
- W894872404 hasRelatedWork W2069049401 @default.
- W894872404 hasRelatedWork W2071044666 @default.
- W894872404 hasRelatedWork W2079705349 @default.
- W894872404 hasRelatedWork W2115361143 @default.
- W894872404 hasRelatedWork W2470964647 @default.
- W894872404 hasRelatedWork W2950536412 @default.
- W894872404 hasRelatedWork W3037257700 @default.
- W894872404 hasRelatedWork W3102469887 @default.
- W894872404 hasRelatedWork W3116875769 @default.
- W894872404 hasRelatedWork W3119323331 @default.
- W894872404 hasRelatedWork W3160729746 @default.
- W894872404 hasRelatedWork W363851534 @default.
- W894872404 hasRelatedWork W372157001 @default.
- W894872404 hasRelatedWork W597288515 @default.
- W894872404 hasRelatedWork W967677552 @default.
- W894872404 isParatext "false" @default.
- W894872404 isRetracted "false" @default.
- W894872404 magId "894872404" @default.
- W894872404 workType "dissertation" @default.