Matches in SemOpenAlex for { <https://semopenalex.org/work/W89560911> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W89560911 abstract "DESIGN OF THE EXTRACTION SYSTEM OF THE SUPERCONDUCTING ECR ION SOURCE VENUS* M.A. Leitner ∗∗ , D.C. Wutte, C.M. Lyneis LBNL, Berkeley, CA 94720, USA Center Solenoid Lens [0.479 m] Ion Source Injection [-0.52 m] Plasma Outlet Hole [0 m] Analyzing Magnet Entrance [1.303 m] Abstract A new, very high magnetic field superconducting ECR ion source, VENUS, is under construction at the LBNL 88-Inch Cyclotron [1,2]. The paper describes the VENUS extraction system and discusses the ion beam formation in the strong axial magnetic field (3 T) of the ECR ion source. Emittance values as expected from theory, which assumes a uniform plasma density across the plasma outlet hole, are compared with actual measurements from the AECR-U ion source. Results indicate that highly charged heavier ions are concentrated on the source axis. They are extracted from an “effective” plasma outlet hole, whose smaller radius must be included in ion optics simulations. Ion Beam Axial Magnetic Field [T] Superposition Source Field Solenoid Field 1 SOURCE DESIGN The magnet structure of VENUS, which consists of three superconducting axial coils and six superconducting radial coils in a sextupole configuration, will generate a maximum axial field of 4 Tesla at the injection side and 3 Tesla at the extraction side. The maximum sextupole field is 2 Tesla at the plasma chamber wall. These high magnetic fields are designed to allow operation with 28 GHz ECR-heating frequency, twice the frequency of current ECR sources. Since the plasma density is expected to scale as frequency squared we anticipate to extract significantly more intense (factor of 4 to 5) ion beams than presently achievable by ECR ion sources. To transport these intense heavy ion beams the extraction system and mass-analyzing system of the ion source is designed for a proton-equivalent current of 25 mA at 30 kV extraction voltage. Ion Source Center Axis [m] Figure 1: Magnetic field distribution of the VENUS ion source, its extraction region, and a subsequent solenoid lens for matching the ion beam to the analyzing magnet. azimuthal momentum in the ion beam, which leads to a considerable emittance increase. 2.1 Influence of the magnetic field The VENUS extraction region has been simulated and optimized with IGUN [3], an axi-symmetric ion optics code for plasma extraction allowing the inclusion of multiple charge states with different space charge contributions. A charge state distribution (from the existing AECR-U ion source) scaled up to the expected higher beam intensities of 25 mA proton-equivalent current has been used as input to the simulations. Calculations have been performed by simulating only a single charge state of interest. The space charge contribution of the whole charge state distribution has been normalized to the equivalent current of the simulated charge state. This method is explained in reference [4]. It has been shown [4] that such a procedure allows an accurate extraction simulation in the presence of a strong axial magnetic field. In addition, simulations using multiple charge states have been performed to investigate the space charge effects due to the mass dependent focusing action of the magnetic field. For an ECR extraction system two main contributions to the ion beam emittance have to be considered: (1) the ion beam temperature and (2) the induced beam rotation due to the decreasing axial magnetic field. 2 EXTRACTION Figure 1 shows the magnetic field distribution of the ion source, its extraction region, and a subsequent solenoid lens for matching the ion beam to the analyzing magnet. Extraction and beam formation take place in a strong (up to 3T) axial magnetic field, which leads to significantly different focusing properties for the different ion masses and charge states of the extracted beam. Due to the large size of the cryostat (including the iron yoke) the extracted ion beam has to be transported without additional focusing element for ~48 cm. In this region the magnetic field drops from 3 to zero Tesla inducing a strong * This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Nuclear Physics Division of the U.S. Department of Energy under Contract DE AC03-76SF00098. ** MLeitner@lbl.gov ; http://ecrgroup.lbl.gov" @default.
- W89560911 created "2016-06-24" @default.
- W89560911 creator A5012809679 @default.
- W89560911 creator A5023534951 @default.
- W89560911 creator A5054206982 @default.
- W89560911 date "2001-05-07" @default.
- W89560911 modified "2023-09-24" @default.
- W89560911 title "Design of the extraction system and beamline of the superconducting ECR ion source VENUS" @default.
- W89560911 hasPublicationYear "2001" @default.
- W89560911 type Work @default.
- W89560911 sameAs 89560911 @default.
- W89560911 citedByCount "0" @default.
- W89560911 crossrefType "journal-article" @default.
- W89560911 hasAuthorship W89560911A5012809679 @default.
- W89560911 hasAuthorship W89560911A5023534951 @default.
- W89560911 hasAuthorship W89560911A5054206982 @default.
- W89560911 hasConcept C120665830 @default.
- W89560911 hasConcept C121332964 @default.
- W89560911 hasConcept C168834538 @default.
- W89560911 hasConcept C172108966 @default.
- W89560911 hasConcept C184779094 @default.
- W89560911 hasConcept C185544564 @default.
- W89560911 hasConcept C188224857 @default.
- W89560911 hasConcept C189166818 @default.
- W89560911 hasConcept C192144188 @default.
- W89560911 hasConcept C26873012 @default.
- W89560911 hasConcept C2779259746 @default.
- W89560911 hasConcept C50774322 @default.
- W89560911 hasConcept C54101563 @default.
- W89560911 hasConcept C62520636 @default.
- W89560911 hasConcept C82706917 @default.
- W89560911 hasConcept C92508244 @default.
- W89560911 hasConceptScore W89560911C120665830 @default.
- W89560911 hasConceptScore W89560911C121332964 @default.
- W89560911 hasConceptScore W89560911C168834538 @default.
- W89560911 hasConceptScore W89560911C172108966 @default.
- W89560911 hasConceptScore W89560911C184779094 @default.
- W89560911 hasConceptScore W89560911C185544564 @default.
- W89560911 hasConceptScore W89560911C188224857 @default.
- W89560911 hasConceptScore W89560911C189166818 @default.
- W89560911 hasConceptScore W89560911C192144188 @default.
- W89560911 hasConceptScore W89560911C26873012 @default.
- W89560911 hasConceptScore W89560911C2779259746 @default.
- W89560911 hasConceptScore W89560911C50774322 @default.
- W89560911 hasConceptScore W89560911C54101563 @default.
- W89560911 hasConceptScore W89560911C62520636 @default.
- W89560911 hasConceptScore W89560911C82706917 @default.
- W89560911 hasConceptScore W89560911C92508244 @default.
- W89560911 hasLocation W895609111 @default.
- W89560911 hasOpenAccess W89560911 @default.
- W89560911 hasPrimaryLocation W895609111 @default.
- W89560911 hasRelatedWork W1569161510 @default.
- W89560911 hasRelatedWork W1654537524 @default.
- W89560911 hasRelatedWork W1965407608 @default.
- W89560911 hasRelatedWork W1997596182 @default.
- W89560911 hasRelatedWork W2009244063 @default.
- W89560911 hasRelatedWork W2017361173 @default.
- W89560911 hasRelatedWork W2027536358 @default.
- W89560911 hasRelatedWork W2050117975 @default.
- W89560911 hasRelatedWork W2055010341 @default.
- W89560911 hasRelatedWork W2070388978 @default.
- W89560911 hasRelatedWork W2076364123 @default.
- W89560911 hasRelatedWork W2373358642 @default.
- W89560911 hasRelatedWork W2803835420 @default.
- W89560911 hasRelatedWork W2896622301 @default.
- W89560911 hasRelatedWork W2900240724 @default.
- W89560911 hasRelatedWork W3004755450 @default.
- W89560911 hasRelatedWork W3004899533 @default.
- W89560911 hasRelatedWork W3016032284 @default.
- W89560911 hasRelatedWork W3111598474 @default.
- W89560911 hasRelatedWork W2842491369 @default.
- W89560911 isParatext "false" @default.
- W89560911 isRetracted "false" @default.
- W89560911 magId "89560911" @default.
- W89560911 workType "article" @default.