Matches in SemOpenAlex for { <https://semopenalex.org/work/W89792202> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W89792202 abstract "The development of high-throughput measurement techniques resulted in rapidlyincreasing amounts of biological data, which made computational methodsessential for biological research. Hence, the field of bioinformatics emergedthat since plays an important role in storing, making accessible, integrating,and analysing different types of biological data. Recently, the use ofcomputational methods to (re)design biological molecules is emerging. Thisthesis describes an approach to determine which protein features influenceproduction and secretion under industrial conditions, and how these results areused to redesign proteins in order to enhance their production levels. The starting point of this thesis work was a set of measured extracellularconcentrations of proteins that were produced under the condition ofover-expression in Aspergillus niger, a filamentous fungus that is often used forindustrial protein production because of its excellent secretion ability. Usingthis data, classifiers where developed that can predict successful proteinover-production based on its sequence. In practice, these classifiers can beused to select proteins that have potential for industrial production. Subsequent classifier analysis was used to infer what sequence-propertiesrelate to low and high production levels respectively. While taking intoaccount a large set of sequence-derived characteristics, the amino acidcomposition, i.e. the relative occurrence of the twenty different amino acidsin a protein, was found to be best discriminating. Classifier analysis showedthe importance of tyrosines for high production levels, whereas lysines andmethionines were found to occur relatively often in proteins with lowproduction levels. A similar classifier-analysis method was also used to findcharacteristic properties of the sequence surrounding neutral anddisease-associated missense mutations in humans. One of the developed classifiers was used in a protein redesign approach toselect amino acid substitutions that are expected to have a positive effect ona protein's production level, while additional objectives and restrictions wereused to reduce the probability that the amino acid substitution will affect theprotein structure. Application of this method resulted in up to ten-foldextracellular concentrations for two A. niger enzymes. These results show thatthis approach is a promising new tool to improve production levels ofindustrial enzymes. Furthermore, additional research to the redesigned proteinsmight help to better understand the mechanisms involved in protein productionand secretion in A. niger." @default.
- W89792202 created "2016-06-24" @default.
- W89792202 creator A5020541707 @default.
- W89792202 date "2015-04-07" @default.
- W89792202 modified "2023-09-23" @default.
- W89792202 title "Sequence-based learning algorithms for understanding and improving protein characteristics" @default.
- W89792202 doi "https://doi.org/10.4233/uuid:30fb4a71-b610-4e51-a37f-0a48c264f20a" @default.
- W89792202 hasPublicationYear "2015" @default.
- W89792202 type Work @default.
- W89792202 sameAs 89792202 @default.
- W89792202 citedByCount "0" @default.
- W89792202 crossrefType "journal-article" @default.
- W89792202 hasAuthorship W89792202A5020541707 @default.
- W89792202 hasConcept C10010492 @default.
- W89792202 hasConcept C104317684 @default.
- W89792202 hasConcept C11413529 @default.
- W89792202 hasConcept C119857082 @default.
- W89792202 hasConcept C154945302 @default.
- W89792202 hasConcept C167625842 @default.
- W89792202 hasConcept C41008148 @default.
- W89792202 hasConcept C55493867 @default.
- W89792202 hasConcept C60644358 @default.
- W89792202 hasConcept C61053724 @default.
- W89792202 hasConcept C70721500 @default.
- W89792202 hasConcept C86803240 @default.
- W89792202 hasConcept C95623464 @default.
- W89792202 hasConceptScore W89792202C10010492 @default.
- W89792202 hasConceptScore W89792202C104317684 @default.
- W89792202 hasConceptScore W89792202C11413529 @default.
- W89792202 hasConceptScore W89792202C119857082 @default.
- W89792202 hasConceptScore W89792202C154945302 @default.
- W89792202 hasConceptScore W89792202C167625842 @default.
- W89792202 hasConceptScore W89792202C41008148 @default.
- W89792202 hasConceptScore W89792202C55493867 @default.
- W89792202 hasConceptScore W89792202C60644358 @default.
- W89792202 hasConceptScore W89792202C61053724 @default.
- W89792202 hasConceptScore W89792202C70721500 @default.
- W89792202 hasConceptScore W89792202C86803240 @default.
- W89792202 hasConceptScore W89792202C95623464 @default.
- W89792202 hasLocation W897922021 @default.
- W89792202 hasOpenAccess W89792202 @default.
- W89792202 hasPrimaryLocation W897922021 @default.
- W89792202 hasRelatedWork W1977340926 @default.
- W89792202 hasRelatedWork W2007457485 @default.
- W89792202 hasRelatedWork W2022323068 @default.
- W89792202 hasRelatedWork W2039260414 @default.
- W89792202 hasRelatedWork W2043978551 @default.
- W89792202 hasRelatedWork W2056930491 @default.
- W89792202 hasRelatedWork W2059830677 @default.
- W89792202 hasRelatedWork W2060624676 @default.
- W89792202 hasRelatedWork W2070436225 @default.
- W89792202 hasRelatedWork W2085176241 @default.
- W89792202 hasRelatedWork W2095065248 @default.
- W89792202 hasRelatedWork W2101697675 @default.
- W89792202 hasRelatedWork W2146189537 @default.
- W89792202 hasRelatedWork W2146972313 @default.
- W89792202 hasRelatedWork W2156215828 @default.
- W89792202 hasRelatedWork W2171967909 @default.
- W89792202 hasRelatedWork W2615830324 @default.
- W89792202 hasRelatedWork W2626582799 @default.
- W89792202 hasRelatedWork W2900113977 @default.
- W89792202 hasRelatedWork W2920013165 @default.
- W89792202 isParatext "false" @default.
- W89792202 isRetracted "false" @default.
- W89792202 magId "89792202" @default.
- W89792202 workType "article" @default.