Matches in SemOpenAlex for { <https://semopenalex.org/work/W8994992> ?p ?o ?g. }
- W8994992 endingPage "505" @default.
- W8994992 startingPage "473" @default.
- W8994992 abstract "In this chapter, the extension of the multivariate curve resolution-alternating least squares (MCR-ALS) method to the simultaneous analysis of multiple data sets bearing information in common is presented. The basic assumption in this extension of multivariate curve resolution (MCR) methods is the fulfillment of a common bilinear model for the simultaneously analyzed data sets, which implies that they share at least some parts of their data variance, e.g.,. some chemical components or species are common among them. Different data arrangements are possible in this approach, depending on the common information shared among the different simultaneously analyzed data sets. If the common information is shared in the variables or column space, a column-wise data matrix augmentation scheme will be adequate to improve MCR analysis and results. On the contrary, if the common information is shared in the samples or row space, a row-wise data matrix augmentation scheme will be more adequate to improve MCR analysis and results. Finally, when these two possibilities are present, a row- and column-wise data matrix augmentation will give the optimal data arrangement for optimal MCR analysis and results. Using these different data matrix augmentation schemes, MCR analysis of multiset arrangements and of more structured multiway data sets is possible. Implementation of constraints during the alternating least squares (ALS) optimization can be tailored according to the specific features of each data matrix and higher order structures, allowing also for the fulfillment of trilinear and multilinear models. Apart from improved resolution capabilities, extended MCR via matrix augmentation is also a powerful tool to break chemical rank deficiencies that often plague chemical reaction-based systems and to perform accurate quantitative estimations deduced from the relative comparison of some parameters of the resolved concentration profiles (height, area) of the common components in the different data sets. A further extension of MCR methods is the inclusion of a priori fundamental knowledge or laws about the nature or behavior of some (or all) of the components in the system. This implies the inclusion of physical or deterministic (hard) modeling in the general frame of the MCR soft bilinear modeling. Kinetics and thermodynamics are the key disciplines of chemistry and are fundamental to all aspects of reaction analysis, where either equilibria mass action laws or kinetic rate laws govern the shape of the concentration profiles of the chemical species linked by multiple equilibria or by kinetics. The possibility of hybridizing these two types of modeling, also called hybrid hard–soft modeling (or gray modeling, considering hard-modeling as white modeling and soft-modeling as black modeling), opens the door to the use of extended MCR in fundamental studies in physical sciences in general and allows for the analysis of complex natural systems where the estimation of parameters (thermodynamic, kinetic) governing these systems is also of relevance and should be performed in the presence of interference contributions. This hybrid approach is especially interesting in cases where the strictly controlled conditions of a laboratory environment cannot be achieved and/or where unknown phenomena disturb the measured signals. Using extended MCR hybrid hard–soft models allows modeling a part of the data variance fulfilling strictly the requirements of physical laws and modeling another part of it freely by a bilinear type of soft model." @default.
- W8994992 created "2016-06-24" @default.
- W8994992 creator A5017741209 @default.
- W8994992 creator A5048992309 @default.
- W8994992 creator A5062928139 @default.
- W8994992 date "2009-01-01" @default.
- W8994992 modified "2023-10-10" @default.
- W8994992 title "Multiset Data Analysis: Extended Multivariate Curve Resolution" @default.
- W8994992 cites W1964121443 @default.
- W8994992 cites W1964967481 @default.
- W8994992 cites W1965735019 @default.
- W8994992 cites W1966786972 @default.
- W8994992 cites W1969982101 @default.
- W8994992 cites W1972326413 @default.
- W8994992 cites W1974227504 @default.
- W8994992 cites W1976681541 @default.
- W8994992 cites W1977196043 @default.
- W8994992 cites W1977922366 @default.
- W8994992 cites W1981784342 @default.
- W8994992 cites W1984024603 @default.
- W8994992 cites W1987120148 @default.
- W8994992 cites W1987578403 @default.
- W8994992 cites W1988365919 @default.
- W8994992 cites W1989258926 @default.
- W8994992 cites W1991632645 @default.
- W8994992 cites W1991851457 @default.
- W8994992 cites W2000161894 @default.
- W8994992 cites W2002910187 @default.
- W8994992 cites W2003843920 @default.
- W8994992 cites W2009145767 @default.
- W8994992 cites W2012880930 @default.
- W8994992 cites W2014159403 @default.
- W8994992 cites W2017886620 @default.
- W8994992 cites W2018497102 @default.
- W8994992 cites W2020504035 @default.
- W8994992 cites W2024349178 @default.
- W8994992 cites W2031585284 @default.
- W8994992 cites W2034070631 @default.
- W8994992 cites W2036283662 @default.
- W8994992 cites W2039326581 @default.
- W8994992 cites W2039902016 @default.
- W8994992 cites W2043082122 @default.
- W8994992 cites W2047328214 @default.
- W8994992 cites W2054371724 @default.
- W8994992 cites W2056897640 @default.
- W8994992 cites W2057359273 @default.
- W8994992 cites W2061442108 @default.
- W8994992 cites W2065249915 @default.
- W8994992 cites W2069475683 @default.
- W8994992 cites W2069753895 @default.
- W8994992 cites W2070622592 @default.
- W8994992 cites W2085936845 @default.
- W8994992 cites W2092280582 @default.
- W8994992 cites W2093144428 @default.
- W8994992 cites W2098098075 @default.
- W8994992 cites W2099373664 @default.
- W8994992 cites W2104676838 @default.
- W8994992 cites W2107985426 @default.
- W8994992 cites W2114891284 @default.
- W8994992 cites W2119741678 @default.
- W8994992 cites W2126506025 @default.
- W8994992 cites W2146388825 @default.
- W8994992 cites W2156083528 @default.
- W8994992 cites W2164670349 @default.
- W8994992 cites W4239588926 @default.
- W8994992 cites W4252674708 @default.
- W8994992 cites W79966369 @default.
- W8994992 doi "https://doi.org/10.1016/b978-044452701-1.00055-7" @default.
- W8994992 hasPublicationYear "2009" @default.
- W8994992 type Work @default.
- W8994992 sameAs 8994992 @default.
- W8994992 citedByCount "59" @default.
- W8994992 countsByYear W89949922012 @default.
- W8994992 countsByYear W89949922013 @default.
- W8994992 countsByYear W89949922014 @default.
- W8994992 countsByYear W89949922015 @default.
- W8994992 countsByYear W89949922016 @default.
- W8994992 countsByYear W89949922017 @default.
- W8994992 countsByYear W89949922018 @default.
- W8994992 countsByYear W89949922019 @default.
- W8994992 countsByYear W89949922020 @default.
- W8994992 countsByYear W89949922021 @default.
- W8994992 countsByYear W89949922022 @default.
- W8994992 countsByYear W89949922023 @default.
- W8994992 crossrefType "book-chapter" @default.
- W8994992 hasAuthorship W8994992A5017741209 @default.
- W8994992 hasAuthorship W8994992A5048992309 @default.
- W8994992 hasAuthorship W8994992A5062928139 @default.
- W8994992 hasBestOaLocation W89949922 @default.
- W8994992 hasConcept C104317684 @default.
- W8994992 hasConcept C105795698 @default.
- W8994992 hasConcept C106487976 @default.
- W8994992 hasConcept C11413529 @default.
- W8994992 hasConcept C118615104 @default.
- W8994992 hasConcept C124101348 @default.
- W8994992 hasConcept C126042441 @default.
- W8994992 hasConcept C159985019 @default.
- W8994992 hasConcept C161584116 @default.