Matches in SemOpenAlex for { <https://semopenalex.org/work/W901537784> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W901537784 endingPage "116" @default.
- W901537784 startingPage "107" @default.
- W901537784 abstract "Carbonation on concrete structures is one of the major causes of deterioration in concrete structures. For quantitative evaluation of carbonation, a physico-chemo modeling for reaction with dissolved CO2 and hydrates is needed. Even the amount of hydrates and CO2 diffusivity coefficient are very important to evaluate behavior of carbonation, it is limited to obtain a various CO2 diffusivity coefficient from experiment due to time and cost. In this study, a numerical technique to predict carbonation depth in concrete using neural network algorithm for proportions of mixture design and change in porosity is developed. In order to obtain the comparable data set of CO2 diffusivity coefficient, existing experimental results are utilized. Data for mixture proportion and relative humidity are selected as neurons and learning for neural network using the so-called back-propagation algorithm is carried out. The results from neural network are in good agreement with experimental data obtained for different water to cement ratios (42%, 50%, and 58%) as well as different relative humidity (10%, 45%, 75%, and 90%). The mercury intrusion porosimetry (MIP) is also performed to evaluate the change in porosity during the carbonation. Finally, a numerical technique, which is based on micro modeling for hydration and pore structure (multi component hydration heat model and micro pore structure formation model), is developed using diffusivity coefficient from neural network algorithm and porosity change from the MIP test. The technique is verified by comparing the numerical results and the experimental results for carbonation depth, and also expected to be more reasonable technique with more various experimental data" @default.
- W901537784 created "2016-06-24" @default.
- W901537784 creator A5047481069 @default.
- W901537784 creator A5047787283 @default.
- W901537784 creator A5067124941 @default.
- W901537784 date "2007-01-01" @default.
- W901537784 modified "2023-09-24" @default.
- W901537784 title "Concrete Carbonation Analysis using Neural Network Algorithm and Change in Pore Structure" @default.
- W901537784 hasPublicationYear "2007" @default.
- W901537784 type Work @default.
- W901537784 sameAs 901537784 @default.
- W901537784 citedByCount "0" @default.
- W901537784 crossrefType "journal-article" @default.
- W901537784 hasAuthorship W901537784A5047481069 @default.
- W901537784 hasAuthorship W901537784A5047787283 @default.
- W901537784 hasAuthorship W901537784A5067124941 @default.
- W901537784 hasConcept C11413529 @default.
- W901537784 hasConcept C119857082 @default.
- W901537784 hasConcept C120809312 @default.
- W901537784 hasConcept C121332964 @default.
- W901537784 hasConcept C158960510 @default.
- W901537784 hasConcept C159985019 @default.
- W901537784 hasConcept C192562407 @default.
- W901537784 hasConcept C2779786595 @default.
- W901537784 hasConcept C2780092901 @default.
- W901537784 hasConcept C37668627 @default.
- W901537784 hasConcept C41008148 @default.
- W901537784 hasConcept C50644808 @default.
- W901537784 hasConcept C6648577 @default.
- W901537784 hasConcept C97355855 @default.
- W901537784 hasConceptScore W901537784C11413529 @default.
- W901537784 hasConceptScore W901537784C119857082 @default.
- W901537784 hasConceptScore W901537784C120809312 @default.
- W901537784 hasConceptScore W901537784C121332964 @default.
- W901537784 hasConceptScore W901537784C158960510 @default.
- W901537784 hasConceptScore W901537784C159985019 @default.
- W901537784 hasConceptScore W901537784C192562407 @default.
- W901537784 hasConceptScore W901537784C2779786595 @default.
- W901537784 hasConceptScore W901537784C2780092901 @default.
- W901537784 hasConceptScore W901537784C37668627 @default.
- W901537784 hasConceptScore W901537784C41008148 @default.
- W901537784 hasConceptScore W901537784C50644808 @default.
- W901537784 hasConceptScore W901537784C6648577 @default.
- W901537784 hasConceptScore W901537784C97355855 @default.
- W901537784 hasLocation W9015377841 @default.
- W901537784 hasOpenAccess W901537784 @default.
- W901537784 hasPrimaryLocation W9015377841 @default.
- W901537784 hasRelatedWork W1964523862 @default.
- W901537784 hasRelatedWork W1965482972 @default.
- W901537784 hasRelatedWork W2013229921 @default.
- W901537784 hasRelatedWork W2020194153 @default.
- W901537784 hasRelatedWork W2020933341 @default.
- W901537784 hasRelatedWork W2042631574 @default.
- W901537784 hasRelatedWork W2046239084 @default.
- W901537784 hasRelatedWork W2061355966 @default.
- W901537784 hasRelatedWork W2065891072 @default.
- W901537784 hasRelatedWork W2067725130 @default.
- W901537784 hasRelatedWork W2080579486 @default.
- W901537784 hasRelatedWork W218143436 @default.
- W901537784 hasRelatedWork W2277986598 @default.
- W901537784 hasRelatedWork W2305456893 @default.
- W901537784 hasRelatedWork W2549043606 @default.
- W901537784 hasRelatedWork W2605737421 @default.
- W901537784 hasRelatedWork W2894579938 @default.
- W901537784 hasRelatedWork W2975293918 @default.
- W901537784 hasRelatedWork W3045730573 @default.
- W901537784 hasRelatedWork W846716021 @default.
- W901537784 hasVolume "27" @default.
- W901537784 isParatext "false" @default.
- W901537784 isRetracted "false" @default.
- W901537784 magId "901537784" @default.
- W901537784 workType "article" @default.