Matches in SemOpenAlex for { <https://semopenalex.org/work/W90849813> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W90849813 abstract "The new microscopy techniques for studying solid surfaces, scanning tunneling microscopy (STM) and atomic force microscopy (AFM), also offer possibilities of studying gaseous nano-voids at solid-water interfaces, i.e. cavitation nuclei. The use of STM presupposes that both the surface studied and that of the STM-tip allow electrons to be transferred to/from the location of tunneling. To detect surface nano-voids by STM it is therefore necessary that when the submerged STM-tip during scanning of a surface meets a void, the tunneling barrier is smaller along the cavity surface than if the tip moves on along the drained solid surface below the void. Likewise, the use of AFM for void detection presupposes that the liquid-gas interface of a void can supply a detectable force on the AFMtip. Otherwise, the tip will ignore the void, and only the solid surface below it will be detected. With both techniques it has proved possible to meet the demands for detection of surface nano-voids, and today their existence is well established. However, the results obtained depend on the technique of microscopy chosen, and on how it is applied, which makes the evaluation of such measurements difficult. Therefore, an analysis of the physics related to void detection by the scanning probe microscopy (SPM) techniques is important. The present paper presents this physics on the basis of experimental results obtained with SPM techniques since the early 1990’es. TECHNIQUES AND ANALYSIS Scanning tunneling microscopy Scanning tunneling microscopy [1] was the first of the SPM techniques to be developed, and therefore it was the one first used for comparison of specimen surfaces in air and in water in search of interfacial cavitation nuclei [2,3,4], originally suggested to exist by Harvey [5]. Specimens of gold (Au), vapour-deposited onto a lacquered aluminum substrate, specimen surfaces of titanium nitride (TiN), deposited onto a tungsten (W) substrate, and specimen surfaces of W were studied. It was revealed that in water the specimen surface topographies appeared notably smoother than in air, Figure 1, when scanned with sharp STM tips made from W. This was a first indication that interfacial voids are present in large numbers at fine roughness structures of submerged solid surfaces (lateral dimensions of up to about 200 nm), and that STM could be used to reveal their existence. But how could surface voids be imaged by STM? And, could the voids be observed by other techniques? Surface imaging by STM is based on a sharp, conducting STM tip being scanned along a conducting specimen surface at a constant tip-specimen distance s, in vacuum typically less than 1 nm, maintained by keeping a tunneling current It of a few nA in the tip-specimen gap constant by moving the tip up Figure 1. The same element of the surface of a W-specimen recorded with a W-tip (A) when submerged in water, and (B) subsequently in air. We notice the apparent smoothness of the surface in water compared with that in air. Also the tunnelling barrier signal is lower in air than in water because in air the tip is extremely close to the specimen surface, and the thin layers of adsorbed water molecules on their surfaces are in contact. It =4 nA [3]." @default.
- W90849813 created "2016-06-24" @default.
- W90849813 creator A5033026377 @default.
- W90849813 date "2009-08-01" @default.
- W90849813 modified "2023-09-25" @default.
- W90849813 title "Interfacial cavitation nuclei studied by scanning probe microscopy techniques" @default.
- W90849813 cites W1620006196 @default.
- W90849813 cites W1970982181 @default.
- W90849813 cites W1973314414 @default.
- W90849813 cites W1979168550 @default.
- W90849813 cites W2002544496 @default.
- W90849813 cites W2066208235 @default.
- W90849813 cites W2069555378 @default.
- W90849813 cites W2082148111 @default.
- W90849813 cites W2129850132 @default.
- W90849813 cites W2768294943 @default.
- W90849813 cites W2145985346 @default.
- W90849813 hasPublicationYear "2009" @default.
- W90849813 type Work @default.
- W90849813 sameAs 90849813 @default.
- W90849813 citedByCount "0" @default.
- W90849813 crossrefType "journal-article" @default.
- W90849813 hasAuthorship W90849813A5033026377 @default.
- W90849813 hasConcept C102951782 @default.
- W90849813 hasConcept C120398109 @default.
- W90849813 hasConcept C120665830 @default.
- W90849813 hasConcept C121332964 @default.
- W90849813 hasConcept C147080431 @default.
- W90849813 hasConcept C159985019 @default.
- W90849813 hasConcept C16777580 @default.
- W90849813 hasConcept C171250308 @default.
- W90849813 hasConcept C187921700 @default.
- W90849813 hasConcept C192562407 @default.
- W90849813 hasConcept C194577767 @default.
- W90849813 hasConcept C206008964 @default.
- W90849813 hasConcept C207057113 @default.
- W90849813 hasConcept C26771246 @default.
- W90849813 hasConcept C2779772531 @default.
- W90849813 hasConcept C36628996 @default.
- W90849813 hasConcept C40312155 @default.
- W90849813 hasConcept C49040817 @default.
- W90849813 hasConcept C55143465 @default.
- W90849813 hasConcept C57879066 @default.
- W90849813 hasConcept C6518042 @default.
- W90849813 hasConcept C99752389 @default.
- W90849813 hasConceptScore W90849813C102951782 @default.
- W90849813 hasConceptScore W90849813C120398109 @default.
- W90849813 hasConceptScore W90849813C120665830 @default.
- W90849813 hasConceptScore W90849813C121332964 @default.
- W90849813 hasConceptScore W90849813C147080431 @default.
- W90849813 hasConceptScore W90849813C159985019 @default.
- W90849813 hasConceptScore W90849813C16777580 @default.
- W90849813 hasConceptScore W90849813C171250308 @default.
- W90849813 hasConceptScore W90849813C187921700 @default.
- W90849813 hasConceptScore W90849813C192562407 @default.
- W90849813 hasConceptScore W90849813C194577767 @default.
- W90849813 hasConceptScore W90849813C206008964 @default.
- W90849813 hasConceptScore W90849813C207057113 @default.
- W90849813 hasConceptScore W90849813C26771246 @default.
- W90849813 hasConceptScore W90849813C2779772531 @default.
- W90849813 hasConceptScore W90849813C36628996 @default.
- W90849813 hasConceptScore W90849813C40312155 @default.
- W90849813 hasConceptScore W90849813C49040817 @default.
- W90849813 hasConceptScore W90849813C55143465 @default.
- W90849813 hasConceptScore W90849813C57879066 @default.
- W90849813 hasConceptScore W90849813C6518042 @default.
- W90849813 hasConceptScore W90849813C99752389 @default.
- W90849813 hasLocation W908498131 @default.
- W90849813 hasOpenAccess W90849813 @default.
- W90849813 hasPrimaryLocation W908498131 @default.
- W90849813 hasRelatedWork W126234195 @default.
- W90849813 hasRelatedWork W1976951221 @default.
- W90849813 hasRelatedWork W2001970090 @default.
- W90849813 hasRelatedWork W2003683385 @default.
- W90849813 hasRelatedWork W2018274100 @default.
- W90849813 hasRelatedWork W2026373564 @default.
- W90849813 hasRelatedWork W2033777181 @default.
- W90849813 hasRelatedWork W2041559335 @default.
- W90849813 hasRelatedWork W2053894070 @default.
- W90849813 hasRelatedWork W2095007749 @default.
- W90849813 hasRelatedWork W2142997908 @default.
- W90849813 hasRelatedWork W2144376632 @default.
- W90849813 hasRelatedWork W2174216780 @default.
- W90849813 hasRelatedWork W2318879450 @default.
- W90849813 hasRelatedWork W2331245770 @default.
- W90849813 hasRelatedWork W2533368062 @default.
- W90849813 hasRelatedWork W3100458445 @default.
- W90849813 hasRelatedWork W3138592248 @default.
- W90849813 hasRelatedWork W952584796 @default.
- W90849813 hasRelatedWork W1870272459 @default.
- W90849813 isParatext "false" @default.
- W90849813 isRetracted "false" @default.
- W90849813 magId "90849813" @default.
- W90849813 workType "article" @default.