Matches in SemOpenAlex for { <https://semopenalex.org/work/W91427809> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W91427809 endingPage "66" @default.
- W91427809 startingPage "37" @default.
- W91427809 abstract "This paper investigates the numerical properties of solutions θ = θ(t) of the third-order equation $$varepsilon {theta _{3}} + {theta _{1}} = frac{{cos ;theta }}{{1 + alpha cos 4theta }},;theta left( {pm infty } right) = pm pi /2$$ ((1.1)) Suffices to θ in (1.1) denote differentiation with respect to t; that is to say θ n = dn θ/dtn; the boundary conditions θ(±∞) = ±π/2 are abbreviations for θ(t) → π±/2 as t → ±∞ respectively; and ε and α are prescribed parameters satisfying ε > 0 and 0 ≤ α < 1. It is convenient to write ε = 2k, and to tabulate results as functions of α and k = log2 ε. Kruskal and Segur [1] give references to the appearance of (1.1) as a model for the dendritic growth of crystals in a supercooled liquid. [Warning: there is some variation of notation in the literature; and, in particular, Kruskal and Segur write ε 2 for the coefficient of θ 3, thus entailing k = 21og2 ε for their use of ε.] A strictly monotonic solution of (1.1) is called a needle crystal solution: and interest centres upon the question of the existence or non-existence of needle solutions. Our earlier paper [2] proved that needle solutions could not exist for α = 0. Kruskal and Segur [1] concluded that, for sufficiently small 6, needle solutions would exist for certain discrete values of α = α(k) > 0. Thus we have an eigenvalue problem with a discrete spectrum. Our analysis of this problem is incomplete, and several interesting questions remain unresolved.KeywordsDiscrete SpectrumDendritic GrowthPrimary SolutionManual SettingMonotonic SolutionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves." @default.
- W91427809 created "2016-06-24" @default.
- W91427809 creator A5059102157 @default.
- W91427809 creator A5084300673 @default.
- W91427809 date "1991-01-01" @default.
- W91427809 modified "2023-09-27" @default.
- W91427809 title "Numerical Analysis of the Geometric Model for Dendritic Growth of Crystals" @default.
- W91427809 cites W2089740930 @default.
- W91427809 cites W2093378100 @default.
- W91427809 doi "https://doi.org/10.1007/978-1-4757-0435-8_4" @default.
- W91427809 hasPublicationYear "1991" @default.
- W91427809 type Work @default.
- W91427809 sameAs 91427809 @default.
- W91427809 citedByCount "0" @default.
- W91427809 crossrefType "book-chapter" @default.
- W91427809 hasAuthorship W91427809A5059102157 @default.
- W91427809 hasAuthorship W91427809A5084300673 @default.
- W91427809 hasConcept C10138342 @default.
- W91427809 hasConcept C114614502 @default.
- W91427809 hasConcept C121332964 @default.
- W91427809 hasConcept C134306372 @default.
- W91427809 hasConcept C156778621 @default.
- W91427809 hasConcept C158693339 @default.
- W91427809 hasConcept C162324750 @default.
- W91427809 hasConcept C182306322 @default.
- W91427809 hasConcept C182310444 @default.
- W91427809 hasConcept C202444582 @default.
- W91427809 hasConcept C33923547 @default.
- W91427809 hasConcept C37914503 @default.
- W91427809 hasConcept C48753275 @default.
- W91427809 hasConcept C62354387 @default.
- W91427809 hasConcept C62520636 @default.
- W91427809 hasConceptScore W91427809C10138342 @default.
- W91427809 hasConceptScore W91427809C114614502 @default.
- W91427809 hasConceptScore W91427809C121332964 @default.
- W91427809 hasConceptScore W91427809C134306372 @default.
- W91427809 hasConceptScore W91427809C156778621 @default.
- W91427809 hasConceptScore W91427809C158693339 @default.
- W91427809 hasConceptScore W91427809C162324750 @default.
- W91427809 hasConceptScore W91427809C182306322 @default.
- W91427809 hasConceptScore W91427809C182310444 @default.
- W91427809 hasConceptScore W91427809C202444582 @default.
- W91427809 hasConceptScore W91427809C33923547 @default.
- W91427809 hasConceptScore W91427809C37914503 @default.
- W91427809 hasConceptScore W91427809C48753275 @default.
- W91427809 hasConceptScore W91427809C62354387 @default.
- W91427809 hasConceptScore W91427809C62520636 @default.
- W91427809 hasLocation W914278091 @default.
- W91427809 hasOpenAccess W91427809 @default.
- W91427809 hasPrimaryLocation W914278091 @default.
- W91427809 hasRelatedWork W1994152391 @default.
- W91427809 hasRelatedWork W2056924166 @default.
- W91427809 hasRelatedWork W2062748375 @default.
- W91427809 hasRelatedWork W2070007329 @default.
- W91427809 hasRelatedWork W2088151068 @default.
- W91427809 hasRelatedWork W2135414851 @default.
- W91427809 hasRelatedWork W2297282002 @default.
- W91427809 hasRelatedWork W2772475823 @default.
- W91427809 hasRelatedWork W2803872864 @default.
- W91427809 hasRelatedWork W2950482546 @default.
- W91427809 hasRelatedWork W2951668979 @default.
- W91427809 hasRelatedWork W2951761353 @default.
- W91427809 hasRelatedWork W2952239318 @default.
- W91427809 hasRelatedWork W2952283084 @default.
- W91427809 hasRelatedWork W2955767323 @default.
- W91427809 hasRelatedWork W2963909120 @default.
- W91427809 hasRelatedWork W2998720948 @default.
- W91427809 hasRelatedWork W3008162507 @default.
- W91427809 hasRelatedWork W3127724154 @default.
- W91427809 hasRelatedWork W3188340786 @default.
- W91427809 isParatext "false" @default.
- W91427809 isRetracted "false" @default.
- W91427809 magId "91427809" @default.
- W91427809 workType "book-chapter" @default.