Matches in SemOpenAlex for { <https://semopenalex.org/work/W914341734> ?p ?o ?g. }
- W914341734 startingPage "3" @default.
- W914341734 abstract "IntroductionData Mining in the Gaming IndustryAs more countries and regions are considering legalizing and/or expanding gaming in their respective markets, many casinos in the global casino market are facing increased competition in player acquisition and retention, as well as revenue generation. Hence, customer relationship management (CRM) has become critical for a profitable relationship with customers. One way in which marketers can effectively compete is mining customer data. Mining and analyzing customer data helps marketers better understand customer behavior and predict specific behaviors. This, in turn, will enable them to identify prospects, segment customers, target specific segments, and inevitably optimize the available marketing resources. For these reasons, big data and predictive analytics have become increasingly important across many industries. While some casinos have embraced data analytics and mined customer data for data driven-marketing (Experfy Insights, 2014), to the best knowledge of the authors of this article, there has been relatively little effort in the gaming literature to discuss the application of data mining methods to the prediction of customer behavior.Data mining is generally defined as the process of discovering meaningful patterns, relationships and associations hidden in large data sets by examining and modeling the data (Chung & Gray, 1999; SPSS Inc., an IBM Company, 2010; Peacock, 1998). The application of data mining techniques to customer data has gained increasing attention and popularity from marketers in various industries, especially in the telecommunication and banking sectors. The use of data mining methods in the marketing field has helped marketers target specific groups of customers or individuals and customize their marketing offers (McCarty & Hastak, 2007). Data mining is also used to classify customers who are likely to respond to specific marketing promotions such as direct-mail offers and to identify cross-sell and up-sell opportunities.In the gaming industry, a few anecdotal case studies claim the application of data mining techniques for the analysis of customer data. For example, it was reported that Las Vegas Sands selected SAS, a business intelligence software vendor, for the analysis of the vast amount of customer-related data collected from its multiple gaming facilities (Woodie, 2011). Another company, Harrah's Entertainment Inc., [Caesars Entertainment Corporation] was also reported for its use of data mining techniques and predictive analytics (SAS, 2010). In the academic field, the Division on Addictions at the Cambridge Health Alliance, a Harvard Medical School Teaching Affiliate, has partnered with bwin, one of the major online gaming companies, for collaborative research on the problem gambling detection and responsible gambling initiatives (Burton, 2008). These collaborative research efforts are based on the tracked gaming data of individual online bettors, preventing self-reported biases and recall issues which are typically associated with the self-report questionnaire approach (Burton, 2008). Despite these claims, there has been very little discussion regarding the application of data mining techniques in the gaming industry. Additionally, the authors' experience in the gaming industry confirms the limited application of statistical and data mining methods in customer classification and behavior prediction.Cross-Gaming PredictionOne of the areas where data mining is potentially useful is identifying casino patrons who are likely to play both slots and table games, also known as cross-gaming (Suh & Alhaery, 2014). While it is a common practice in the gaming industry to divide customers into either slot or table game players and market to them accordingly, some patrons may play both slots and table games or have the potential to play both (Suh & Alhaery, 2014). Casino operators often try to promote table games to slot players and vice versa in the hopes of increasing overall gaming revenues (Brokopp, 2008; Green, 2010; Fleming, 2006; Pollard, 2008). …" @default.
- W914341734 created "2016-06-24" @default.
- W914341734 creator A5036551881 @default.
- W914341734 creator A5078623831 @default.
- W914341734 date "2015-06-03" @default.
- W914341734 modified "2023-09-23" @default.
- W914341734 title "PREDICTING CROSS-GAMING PROPENSITY USING E-CHAID ANALYSIS" @default.
- W914341734 cites W136497305 @default.
- W914341734 cites W1602602570 @default.
- W914341734 cites W1749726224 @default.
- W914341734 cites W1968806371 @default.
- W914341734 cites W2059888405 @default.
- W914341734 cites W2059982706 @default.
- W914341734 cites W2061961294 @default.
- W914341734 cites W2063700104 @default.
- W914341734 cites W2066004611 @default.
- W914341734 cites W2099267815 @default.
- W914341734 cites W2101303134 @default.
- W914341734 cites W2138898614 @default.
- W914341734 cites W3124011828 @default.
- W914341734 hasPublicationYear "2015" @default.
- W914341734 type Work @default.
- W914341734 sameAs 914341734 @default.
- W914341734 citedByCount "0" @default.
- W914341734 crossrefType "journal-article" @default.
- W914341734 hasAuthorship W914341734A5036551881 @default.
- W914341734 hasAuthorship W914341734A5078623831 @default.
- W914341734 hasConcept C101276457 @default.
- W914341734 hasConcept C121955636 @default.
- W914341734 hasConcept C124101348 @default.
- W914341734 hasConcept C125308379 @default.
- W914341734 hasConcept C130721881 @default.
- W914341734 hasConcept C140781008 @default.
- W914341734 hasConcept C144133560 @default.
- W914341734 hasConcept C15744967 @default.
- W914341734 hasConcept C16023879 @default.
- W914341734 hasConcept C162853370 @default.
- W914341734 hasConcept C195487862 @default.
- W914341734 hasConcept C23213687 @default.
- W914341734 hasConcept C2522767166 @default.
- W914341734 hasConcept C2780378061 @default.
- W914341734 hasConcept C2780586970 @default.
- W914341734 hasConcept C41008148 @default.
- W914341734 hasConcept C57660159 @default.
- W914341734 hasConcept C75684735 @default.
- W914341734 hasConcept C77805123 @default.
- W914341734 hasConcept C79158427 @default.
- W914341734 hasConcept C83209312 @default.
- W914341734 hasConcept C84525736 @default.
- W914341734 hasConcept C98825075 @default.
- W914341734 hasConceptScore W914341734C101276457 @default.
- W914341734 hasConceptScore W914341734C121955636 @default.
- W914341734 hasConceptScore W914341734C124101348 @default.
- W914341734 hasConceptScore W914341734C125308379 @default.
- W914341734 hasConceptScore W914341734C130721881 @default.
- W914341734 hasConceptScore W914341734C140781008 @default.
- W914341734 hasConceptScore W914341734C144133560 @default.
- W914341734 hasConceptScore W914341734C15744967 @default.
- W914341734 hasConceptScore W914341734C16023879 @default.
- W914341734 hasConceptScore W914341734C162853370 @default.
- W914341734 hasConceptScore W914341734C195487862 @default.
- W914341734 hasConceptScore W914341734C23213687 @default.
- W914341734 hasConceptScore W914341734C2522767166 @default.
- W914341734 hasConceptScore W914341734C2780378061 @default.
- W914341734 hasConceptScore W914341734C2780586970 @default.
- W914341734 hasConceptScore W914341734C41008148 @default.
- W914341734 hasConceptScore W914341734C57660159 @default.
- W914341734 hasConceptScore W914341734C75684735 @default.
- W914341734 hasConceptScore W914341734C77805123 @default.
- W914341734 hasConceptScore W914341734C79158427 @default.
- W914341734 hasConceptScore W914341734C83209312 @default.
- W914341734 hasConceptScore W914341734C84525736 @default.
- W914341734 hasConceptScore W914341734C98825075 @default.
- W914341734 hasIssue "1" @default.
- W914341734 hasLocation W9143417341 @default.
- W914341734 hasOpenAccess W914341734 @default.
- W914341734 hasPrimaryLocation W9143417341 @default.
- W914341734 hasRelatedWork W1454129948 @default.
- W914341734 hasRelatedWork W1484201772 @default.
- W914341734 hasRelatedWork W1500459633 @default.
- W914341734 hasRelatedWork W1554197503 @default.
- W914341734 hasRelatedWork W184368766 @default.
- W914341734 hasRelatedWork W1966846660 @default.
- W914341734 hasRelatedWork W1968154401 @default.
- W914341734 hasRelatedWork W1978805785 @default.
- W914341734 hasRelatedWork W2060471015 @default.
- W914341734 hasRelatedWork W2069038142 @default.
- W914341734 hasRelatedWork W2183269437 @default.
- W914341734 hasRelatedWork W2187320625 @default.
- W914341734 hasRelatedWork W2319789068 @default.
- W914341734 hasRelatedWork W2734358682 @default.
- W914341734 hasRelatedWork W2759256863 @default.
- W914341734 hasRelatedWork W2783639783 @default.
- W914341734 hasRelatedWork W2945736730 @default.
- W914341734 hasRelatedWork W2965168903 @default.
- W914341734 hasRelatedWork W2997053010 @default.
- W914341734 hasRelatedWork W2186168172 @default.
- W914341734 hasVolume "19" @default.
- W914341734 isParatext "false" @default.