Matches in SemOpenAlex for { <https://semopenalex.org/work/W9144620> ?p ?o ?g. }
- W9144620 abstract "The next generation of particle colliders will be characterized by linear lepton colliders, where the collisions between electrons and positrons will allow to study in great detail the new particle discovered at CERN in 2012 (presumably the Higgs boson). At present time, there are two alternative projects underway, namely the ILC (International Linear Collider) and CLIC (Compact LInear Collider). From the detector point of view, the physics aims at these particle colliders impose such extreme requirements, that there is no sensor technology available in the market that can fulfill all of them. As a result, several new detector systems are being developed in parallel with the accelerator. This thesis presents the development of a GAPD (Geiger-mode Avalanche PhotoDiode) pixel detector aimed mostly at particle tracking at future linear colliders. GAPDs offer outstanding qualities to meet the challenging requirements of ILC and CLIC, such as an extraordinary high sensitivity, virtually infinite gain and ultra-fast response time, apart from compatibility with standard CMOS technologies. In particular, GAPD detectors enable the direct conversion of a single particle event onto a CMOS digital pulse in the sub-nanosecond time scale without the utilization of either preamplifiers or pulse shapers. As a result, GAPDs can be read out after each single bunch crossing, a unique quality that none of its competitors can offer at the moment. In spite of all these advantages, GAPD detectors suffer from two main problems. On the one side, there exist noise phenomena inherent to the sensor, which induce noise pulses that cannot be distinguished from real particle events and also worsen the detector occupancy to unacceptable levels. On the other side, the fill-factor is too low and gives rise to a reduced detection efficiency. Solutions to the two problems commented that are compliant with the severe specifications of the next generation of particle colliders have been thoroughly investigated. The design and characterization of several single pixels and small arrays that incorporate some elements to reduce the intrinsic noise generated by the sensor are presented. The sensors and the readout circuits have been monolithically integrated in a conventional HV-CMOS 0.35 ?m process. Concerning the readout circuits, both voltage-mode and current-mode options have been considered. Moreover, the time-gated operation has also been explored as an alternative to reduce the detected sensor noise. The design and thorough characterization of a prototype GAPD array, also monolithically integrated in a conventional 0.35 ?m HV-CMOS process, is presented in the thesis as well. The detector consists of 10 rows x 43 columns of pixels, with a total sensitive area of 1 mm x 1 mm. The array is operated in a time-gated mode and read out sequentially by rows. The efficiency of the proposed technique to reduce the detected noise is shown with a wide variety of measurements. Further improved results are obtained with the reduction of the working temperature. Finally, the suitability of the proposed detector array for particle detection is shown with the results of a beam-test campaign conducted at CERN-SPS (European Organization for Nuclear Research-Super Proton Synchrotron). Apart from that, a series of additional approaches to improve the performance of the GAPD technology are proposed. The benefits of integrating a GAPD pixel array in a 3D process in terms of overcoming the fill-factor limitation are examined first. The design of a GAPD detector in the Global Foundries 130 nm/Tezzaron 3D process is also presented. Moreover, the possibility to obtain better results in light detection applications by means of the time-gated operation or correction techniques is analyzed too." @default.
- W9144620 created "2016-06-24" @default.
- W9144620 creator A5021372447 @default.
- W9144620 date "2013-11-22" @default.
- W9144620 modified "2023-09-23" @default.
- W9144620 title "Feasibility of Geiger-mode avalanche photodiodes in CMOS standard technologies for tracker detectors" @default.
- W9144620 cites W1482677613 @default.
- W9144620 cites W1522581945 @default.
- W9144620 cites W1591258193 @default.
- W9144620 cites W1612865622 @default.
- W9144620 cites W1626606726 @default.
- W9144620 cites W165072113 @default.
- W9144620 cites W175734460 @default.
- W9144620 cites W1848713437 @default.
- W9144620 cites W1858542512 @default.
- W9144620 cites W1964293644 @default.
- W9144620 cites W1965629054 @default.
- W9144620 cites W19673113 @default.
- W9144620 cites W1969787537 @default.
- W9144620 cites W1975496472 @default.
- W9144620 cites W1980249317 @default.
- W9144620 cites W1980867351 @default.
- W9144620 cites W1982983898 @default.
- W9144620 cites W1989917143 @default.
- W9144620 cites W1990781721 @default.
- W9144620 cites W1991445778 @default.
- W9144620 cites W1992143188 @default.
- W9144620 cites W1994092809 @default.
- W9144620 cites W1997934812 @default.
- W9144620 cites W1998984636 @default.
- W9144620 cites W1998992545 @default.
- W9144620 cites W2000004838 @default.
- W9144620 cites W2002005025 @default.
- W9144620 cites W2002018945 @default.
- W9144620 cites W2002375860 @default.
- W9144620 cites W2004346967 @default.
- W9144620 cites W2006712015 @default.
- W9144620 cites W2010694256 @default.
- W9144620 cites W2013482589 @default.
- W9144620 cites W2014415010 @default.
- W9144620 cites W2015520020 @default.
- W9144620 cites W2019230763 @default.
- W9144620 cites W2026098432 @default.
- W9144620 cites W2028409478 @default.
- W9144620 cites W2030781869 @default.
- W9144620 cites W2033745895 @default.
- W9144620 cites W2034937129 @default.
- W9144620 cites W2043474845 @default.
- W9144620 cites W2043791724 @default.
- W9144620 cites W2045329387 @default.
- W9144620 cites W2045558103 @default.
- W9144620 cites W2045860943 @default.
- W9144620 cites W2053286848 @default.
- W9144620 cites W2054111943 @default.
- W9144620 cites W2054873125 @default.
- W9144620 cites W2057123841 @default.
- W9144620 cites W2061375559 @default.
- W9144620 cites W2063918698 @default.
- W9144620 cites W206409257 @default.
- W9144620 cites W2068111547 @default.
- W9144620 cites W2069476670 @default.
- W9144620 cites W2070151728 @default.
- W9144620 cites W2070409500 @default.
- W9144620 cites W2074055626 @default.
- W9144620 cites W2083149473 @default.
- W9144620 cites W2087403696 @default.
- W9144620 cites W2091008990 @default.
- W9144620 cites W2097068797 @default.
- W9144620 cites W2097356494 @default.
- W9144620 cites W2098852067 @default.
- W9144620 cites W2101508642 @default.
- W9144620 cites W2101742655 @default.
- W9144620 cites W2102204611 @default.
- W9144620 cites W2103136123 @default.
- W9144620 cites W2103885486 @default.
- W9144620 cites W2105496201 @default.
- W9144620 cites W2107641824 @default.
- W9144620 cites W2108443753 @default.
- W9144620 cites W2108718710 @default.
- W9144620 cites W2120588313 @default.
- W9144620 cites W2122813347 @default.
- W9144620 cites W2123355768 @default.
- W9144620 cites W2125639054 @default.
- W9144620 cites W2125883591 @default.
- W9144620 cites W2128158076 @default.
- W9144620 cites W2128485160 @default.
- W9144620 cites W2128881154 @default.
- W9144620 cites W2131208029 @default.
- W9144620 cites W2132255252 @default.
- W9144620 cites W2133052720 @default.
- W9144620 cites W2134397955 @default.
- W9144620 cites W2135238619 @default.
- W9144620 cites W2135260691 @default.
- W9144620 cites W2136738825 @default.
- W9144620 cites W2138962110 @default.
- W9144620 cites W2141493752 @default.
- W9144620 cites W2141977739 @default.
- W9144620 cites W2142774158 @default.
- W9144620 cites W2145125451 @default.
- W9144620 cites W2151016044 @default.