Matches in SemOpenAlex for { <https://semopenalex.org/work/W91700548> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W91700548 endingPage "100" @default.
- W91700548 startingPage "91" @default.
- W91700548 abstract "In many fields such as data mining, machine learning, pattern recognition and signal processing, data sets containing huge number of features are often involved. Feature selection is an essential data preprocessing technique for such high-dimensional data classification tasks. Traditional dimensionality reduction approach falls into two categories: Feature Extraction (FE) and Feature Selection (FS). Principal component analysis is an unsupervised linear FE method for projecting high-dimensional data into a low-dimensional space with minimum loss of information. It discovers the directions of maximal variances in the data. The Rough set approach to feature selection is used to discover the data dependencies and reduction in the number of attributes contained in a data set using the data alone, requiring no additional information. For selecting discriminative features from principal components, the Rough set theory can be applied jointly with PCA, which guarantees that the selected principal components will be the most adequate for classification. We call this method Rough PCA. The proposed method is successfully applied for choosing the principal features and then applying the Upper and Lower Approximations to find the reduced set of features from a gene expression data." @default.
- W91700548 created "2016-06-24" @default.
- W91700548 creator A5008946889 @default.
- W91700548 creator A5024821102 @default.
- W91700548 creator A5060243836 @default.
- W91700548 creator A5067460865 @default.
- W91700548 date "2011-01-01" @default.
- W91700548 modified "2023-09-25" @default.
- W91700548 title "Feature Selection in Gene Expression Data Using Principal Component Analysis and Rough Set Theory" @default.
- W91700548 cites W1578177779 @default.
- W91700548 cites W2158194116 @default.
- W91700548 cites W2499254828 @default.
- W91700548 cites W341374992 @default.
- W91700548 cites W4255833381 @default.
- W91700548 cites W4292023222 @default.
- W91700548 cites W2134135067 @default.
- W91700548 doi "https://doi.org/10.1007/978-1-4419-7046-6_10" @default.
- W91700548 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21431550" @default.
- W91700548 hasPublicationYear "2011" @default.
- W91700548 type Work @default.
- W91700548 sameAs 91700548 @default.
- W91700548 citedByCount "22" @default.
- W91700548 countsByYear W917005482012 @default.
- W91700548 countsByYear W917005482013 @default.
- W91700548 countsByYear W917005482015 @default.
- W91700548 countsByYear W917005482016 @default.
- W91700548 countsByYear W917005482017 @default.
- W91700548 countsByYear W917005482019 @default.
- W91700548 countsByYear W917005482020 @default.
- W91700548 countsByYear W917005482021 @default.
- W91700548 countsByYear W917005482022 @default.
- W91700548 crossrefType "book-chapter" @default.
- W91700548 hasAuthorship W91700548A5008946889 @default.
- W91700548 hasAuthorship W91700548A5024821102 @default.
- W91700548 hasAuthorship W91700548A5060243836 @default.
- W91700548 hasAuthorship W91700548A5067460865 @default.
- W91700548 hasConcept C10551718 @default.
- W91700548 hasConcept C111012933 @default.
- W91700548 hasConcept C124101348 @default.
- W91700548 hasConcept C138885662 @default.
- W91700548 hasConcept C148483581 @default.
- W91700548 hasConcept C153180895 @default.
- W91700548 hasConcept C154945302 @default.
- W91700548 hasConcept C177264268 @default.
- W91700548 hasConcept C199360897 @default.
- W91700548 hasConcept C27438332 @default.
- W91700548 hasConcept C2776401178 @default.
- W91700548 hasConcept C33923547 @default.
- W91700548 hasConcept C34736171 @default.
- W91700548 hasConcept C41008148 @default.
- W91700548 hasConcept C41895202 @default.
- W91700548 hasConcept C52622490 @default.
- W91700548 hasConcept C58489278 @default.
- W91700548 hasConcept C70518039 @default.
- W91700548 hasConcept C97931131 @default.
- W91700548 hasConceptScore W91700548C10551718 @default.
- W91700548 hasConceptScore W91700548C111012933 @default.
- W91700548 hasConceptScore W91700548C124101348 @default.
- W91700548 hasConceptScore W91700548C138885662 @default.
- W91700548 hasConceptScore W91700548C148483581 @default.
- W91700548 hasConceptScore W91700548C153180895 @default.
- W91700548 hasConceptScore W91700548C154945302 @default.
- W91700548 hasConceptScore W91700548C177264268 @default.
- W91700548 hasConceptScore W91700548C199360897 @default.
- W91700548 hasConceptScore W91700548C27438332 @default.
- W91700548 hasConceptScore W91700548C2776401178 @default.
- W91700548 hasConceptScore W91700548C33923547 @default.
- W91700548 hasConceptScore W91700548C34736171 @default.
- W91700548 hasConceptScore W91700548C41008148 @default.
- W91700548 hasConceptScore W91700548C41895202 @default.
- W91700548 hasConceptScore W91700548C52622490 @default.
- W91700548 hasConceptScore W91700548C58489278 @default.
- W91700548 hasConceptScore W91700548C70518039 @default.
- W91700548 hasConceptScore W91700548C97931131 @default.
- W91700548 hasLocation W917005481 @default.
- W91700548 hasLocation W917005482 @default.
- W91700548 hasOpenAccess W91700548 @default.
- W91700548 hasPrimaryLocation W917005481 @default.
- W91700548 hasRelatedWork W2010043809 @default.
- W91700548 hasRelatedWork W2091080939 @default.
- W91700548 hasRelatedWork W2108104958 @default.
- W91700548 hasRelatedWork W2144653557 @default.
- W91700548 hasRelatedWork W2377815255 @default.
- W91700548 hasRelatedWork W2380927352 @default.
- W91700548 hasRelatedWork W2970216048 @default.
- W91700548 hasRelatedWork W3154145980 @default.
- W91700548 hasRelatedWork W606557127 @default.
- W91700548 hasRelatedWork W91700548 @default.
- W91700548 isParatext "false" @default.
- W91700548 isRetracted "false" @default.
- W91700548 magId "91700548" @default.
- W91700548 workType "book-chapter" @default.