Matches in SemOpenAlex for { <https://semopenalex.org/work/W91747832> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W91747832 endingPage "19" @default.
- W91747832 startingPage "6" @default.
- W91747832 abstract "We consider countably infinite random geometric graphs, whose vertices are points in ℝ n , and edges are added independently with probability p ∈ (0,1) if the metric distance between the vertices is below a given threshold. Assume that the vertex set is randomly chosen and dense in ℝ n . We address the basic question: for what metrics is there a unique isomorphism type for graphs resulting from this random process? It was shown in [7] that a unique isomorphism type occurs for the L ∞ -metric for all n ≥ 1. The hexagonal metric is a convex polyhedral distance function on ℝ2, which has the property that its unit balls tile the plane, as in the case of the L ∞ -metric. We may view the hexagonal metric as an approximation of the Euclidean metric, and it arises in computational geometry. We show that the random process with the hexagonal metric does not lead to a unique isomorphism type." @default.
- W91747832 created "2016-06-24" @default.
- W91747832 creator A5067447908 @default.
- W91747832 creator A5082423050 @default.
- W91747832 date "2012-01-01" @default.
- W91747832 modified "2023-09-23" @default.
- W91747832 title "Infinite Random Geometric Graphs from the Hexagonal Metric" @default.
- W91747832 cites W1488160161 @default.
- W91747832 cites W1591457625 @default.
- W91747832 cites W1839451671 @default.
- W91747832 cites W1850172974 @default.
- W91747832 cites W1966574936 @default.
- W91747832 cites W1992602692 @default.
- W91747832 cites W2033370626 @default.
- W91747832 cites W2037549896 @default.
- W91747832 cites W2038429563 @default.
- W91747832 cites W2044541981 @default.
- W91747832 cites W2082734581 @default.
- W91747832 cites W2109573594 @default.
- W91747832 cites W2111754130 @default.
- W91747832 cites W2163232127 @default.
- W91747832 cites W3030115066 @default.
- W91747832 cites W3032195317 @default.
- W91747832 cites W3137256632 @default.
- W91747832 cites W4245451182 @default.
- W91747832 cites W4248209491 @default.
- W91747832 cites W4253556183 @default.
- W91747832 cites W630423399 @default.
- W91747832 cites W75581828 @default.
- W91747832 doi "https://doi.org/10.1007/978-3-642-35926-2_2" @default.
- W91747832 hasPublicationYear "2012" @default.
- W91747832 type Work @default.
- W91747832 sameAs 91747832 @default.
- W91747832 citedByCount "3" @default.
- W91747832 countsByYear W917478322013 @default.
- W91747832 countsByYear W917478322018 @default.
- W91747832 countsByYear W917478322021 @default.
- W91747832 crossrefType "book-chapter" @default.
- W91747832 hasAuthorship W91747832A5067447908 @default.
- W91747832 hasAuthorship W91747832A5082423050 @default.
- W91747832 hasBestOaLocation W917478322 @default.
- W91747832 hasConcept C102192266 @default.
- W91747832 hasConcept C114614502 @default.
- W91747832 hasConcept C115624301 @default.
- W91747832 hasConcept C118615104 @default.
- W91747832 hasConcept C132525143 @default.
- W91747832 hasConcept C160446614 @default.
- W91747832 hasConcept C162324750 @default.
- W91747832 hasConcept C176217482 @default.
- W91747832 hasConcept C185592680 @default.
- W91747832 hasConcept C198043062 @default.
- W91747832 hasConcept C203436722 @default.
- W91747832 hasConcept C21547014 @default.
- W91747832 hasConcept C33923547 @default.
- W91747832 hasConcept C47458327 @default.
- W91747832 hasConcept C60933471 @default.
- W91747832 hasConcept C8010536 @default.
- W91747832 hasConceptScore W91747832C102192266 @default.
- W91747832 hasConceptScore W91747832C114614502 @default.
- W91747832 hasConceptScore W91747832C115624301 @default.
- W91747832 hasConceptScore W91747832C118615104 @default.
- W91747832 hasConceptScore W91747832C132525143 @default.
- W91747832 hasConceptScore W91747832C160446614 @default.
- W91747832 hasConceptScore W91747832C162324750 @default.
- W91747832 hasConceptScore W91747832C176217482 @default.
- W91747832 hasConceptScore W91747832C185592680 @default.
- W91747832 hasConceptScore W91747832C198043062 @default.
- W91747832 hasConceptScore W91747832C203436722 @default.
- W91747832 hasConceptScore W91747832C21547014 @default.
- W91747832 hasConceptScore W91747832C33923547 @default.
- W91747832 hasConceptScore W91747832C47458327 @default.
- W91747832 hasConceptScore W91747832C60933471 @default.
- W91747832 hasConceptScore W91747832C8010536 @default.
- W91747832 hasLocation W917478321 @default.
- W91747832 hasLocation W917478322 @default.
- W91747832 hasOpenAccess W91747832 @default.
- W91747832 hasPrimaryLocation W917478321 @default.
- W91747832 hasRelatedWork W1588217500 @default.
- W91747832 hasRelatedWork W2002199085 @default.
- W91747832 hasRelatedWork W2531100822 @default.
- W91747832 hasRelatedWork W2910630640 @default.
- W91747832 hasRelatedWork W2953214038 @default.
- W91747832 hasRelatedWork W3106212946 @default.
- W91747832 hasRelatedWork W3126514426 @default.
- W91747832 hasRelatedWork W4297416659 @default.
- W91747832 hasRelatedWork W4299637781 @default.
- W91747832 hasRelatedWork W94361082 @default.
- W91747832 isParatext "false" @default.
- W91747832 isRetracted "false" @default.
- W91747832 magId "91747832" @default.
- W91747832 workType "book-chapter" @default.