Matches in SemOpenAlex for { <https://semopenalex.org/work/W917774098> ?p ?o ?g. }
- W917774098 endingPage "127" @default.
- W917774098 startingPage "108" @default.
- W917774098 abstract "Due to the complex nature of software development process, traditional parametric models and statistical methods often appear to be inadequate to model the increasingly complicated relationship between project development cost and the project features (or cost drivers). Machine learning (ML) methods, with several reported successful applications, have gained popularity for software cost estimation in recent years. Data preprocessing has been claimed by many researchers as a fundamental stage of ML methods; however, very few works have been focused on the effects of data preprocessing techniques. This study aims for an empirical assessment of the effectiveness of data preprocessing techniques on ML methods in the context of software cost estimation. In this work, we first conduct a literature survey of the recent publications using data preprocessing techniques, followed by a systematic empirical study to analyze the strengths and weaknesses of individual data preprocessing techniques as well as their combinations. Our results indicate that data preprocessing techniques may significantly influence the final prediction. They sometimes might have negative impacts on prediction performance of ML methods. In order to reduce prediction errors and improve efficiency, a careful selection is necessary according to the characteristics of machine learning methods, as well as the datasets used for software cost estimation." @default.
- W917774098 created "2016-06-24" @default.
- W917774098 creator A5031762854 @default.
- W917774098 creator A5054673389 @default.
- W917774098 creator A5070592593 @default.
- W917774098 date "2015-11-01" @default.
- W917774098 modified "2023-10-16" @default.
- W917774098 title "An empirical analysis of data preprocessing for machine learning-based software cost estimation" @default.
- W917774098 cites W1603123038 @default.
- W917774098 cites W1965619387 @default.
- W917774098 cites W1965881061 @default.
- W917774098 cites W1967960963 @default.
- W917774098 cites W1969265968 @default.
- W917774098 cites W1970660793 @default.
- W917774098 cites W1973144832 @default.
- W917774098 cites W1973434865 @default.
- W917774098 cites W1989354793 @default.
- W917774098 cites W1991150964 @default.
- W917774098 cites W1991871063 @default.
- W917774098 cites W1995790322 @default.
- W917774098 cites W1999564642 @default.
- W917774098 cites W2000642745 @default.
- W917774098 cites W2005504865 @default.
- W917774098 cites W2006198120 @default.
- W917774098 cites W2009151039 @default.
- W917774098 cites W2009332873 @default.
- W917774098 cites W2009407457 @default.
- W917774098 cites W2009786711 @default.
- W917774098 cites W2011533104 @default.
- W917774098 cites W2012335756 @default.
- W917774098 cites W2014455254 @default.
- W917774098 cites W2021565261 @default.
- W917774098 cites W2022537368 @default.
- W917774098 cites W2024303949 @default.
- W917774098 cites W2028351151 @default.
- W917774098 cites W2032375313 @default.
- W917774098 cites W2034714446 @default.
- W917774098 cites W2037664399 @default.
- W917774098 cites W2039182691 @default.
- W917774098 cites W2040855338 @default.
- W917774098 cites W2044988283 @default.
- W917774098 cites W2063726643 @default.
- W917774098 cites W2065045338 @default.
- W917774098 cites W2066452975 @default.
- W917774098 cites W2070785919 @default.
- W917774098 cites W2072634437 @default.
- W917774098 cites W2073152299 @default.
- W917774098 cites W2073751151 @default.
- W917774098 cites W2074626524 @default.
- W917774098 cites W2076091918 @default.
- W917774098 cites W2076363376 @default.
- W917774098 cites W2077031141 @default.
- W917774098 cites W2077174673 @default.
- W917774098 cites W2089232047 @default.
- W917774098 cites W2090682913 @default.
- W917774098 cites W2090836550 @default.
- W917774098 cites W2090954654 @default.
- W917774098 cites W2092130684 @default.
- W917774098 cites W2097167237 @default.
- W917774098 cites W2097670073 @default.
- W917774098 cites W2104236502 @default.
- W917774098 cites W2106282576 @default.
- W917774098 cites W2107725544 @default.
- W917774098 cites W2109942136 @default.
- W917774098 cites W2110138665 @default.
- W917774098 cites W2111758151 @default.
- W917774098 cites W2112382199 @default.
- W917774098 cites W2116589581 @default.
- W917774098 cites W2123279272 @default.
- W917774098 cites W2124271421 @default.
- W917774098 cites W2125595978 @default.
- W917774098 cites W2125809971 @default.
- W917774098 cites W2128683249 @default.
- W917774098 cites W2133160781 @default.
- W917774098 cites W2133310581 @default.
- W917774098 cites W2133442842 @default.
- W917774098 cites W2136691316 @default.
- W917774098 cites W2140246936 @default.
- W917774098 cites W2144641356 @default.
- W917774098 cites W2154053567 @default.
- W917774098 cites W2157542847 @default.
- W917774098 cites W2159747233 @default.
- W917774098 cites W2160604967 @default.
- W917774098 cites W2161074247 @default.
- W917774098 cites W2163046038 @default.
- W917774098 cites W2166573308 @default.
- W917774098 cites W2166773957 @default.
- W917774098 cites W2170491347 @default.
- W917774098 cites W2171816001 @default.
- W917774098 cites W2318989318 @default.
- W917774098 cites W2345506238 @default.
- W917774098 cites W3143454941 @default.
- W917774098 cites W3143822685 @default.
- W917774098 cites W4232941184 @default.
- W917774098 doi "https://doi.org/10.1016/j.infsof.2015.07.004" @default.
- W917774098 hasPublicationYear "2015" @default.
- W917774098 type Work @default.
- W917774098 sameAs 917774098 @default.